Yujie Huang


2025

pdf bib
Cross-Document Cross-Lingual NLI via RST-Enhanced Graph Fusion and Interpretability Prediction
Mengying Yuan | WenHao Wang | Zixuan Wang | Yujie Huang | Kangli Wei | Fei Li | Chong Teng | Donghong Ji
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many subdirections such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages.To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction.Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations.Extensive experiments demonstrate our approach’s superior performance, achieving significant improvements over both conventional NLI models as well as large language models.Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference.Our code and dataset are available at CDCL-NLI-link.

pdf bib
Cross-Document Cross-Lingual NLI via RST-Enhanced Graph Fusion and Interpretability Prediction
Mengying Yuan | WenHao Wang | Zixuan Wang | Yujie Huang | Kangli Wei | Fei Li | Chong Teng | Donghong Ji
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025)

Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many sub-directions such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages. To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction. Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations. Extensive experiments demonstrate our approach”s superior performance, achieving significant improvements over both conventional NLI models as well as large language models. Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference. Our dataset and code are available at https://anonymous.4open.science/r/CDCL-NLI-637E/ for peer review.

2024

pdf bib
OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems
Chaoqun He | Renjie Luo | Yuzhuo Bai | Shengding Hu | Zhen Thai | Junhao Shen | Jinyi Hu | Xu Han | Yujie Huang | Yuxiang Zhang | Jie Liu | Lei Qi | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench