Yuecheng Liu


2025

pdf bib
Astra: Efficient Transformer Architecture and Contrastive Dynamics Learning for Embodied Instruction Following
Yueen Ma | DaFeng Chi | Shiguang Wu | Yuecheng Liu | Yuzheng Zhuang | Irwin King
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Vision-language-action models have gained significant attention for their ability to model multimodal sequences in embodied instruction following tasks. However, most existing models rely on causal attention, which we find suboptimal for processing sequences composed of interleaved segments from different modalities. In this paper, we introduce Astra, a novel Transformer architecture featuring trajectory attention and learnable action queries, designed to efficiently process segmented multimodal trajectories and predict actions for imitation learning. Furthermore, we propose a contrastive dynamics learning objective to enhance the model’s understanding of environment dynamics and multimodal alignment, complementing the primary behavior cloning objective. Through extensive experiments on three large-scale robot manipulation benchmarks, Astra demonstrates substantial performance improvements over previous models.

pdf bib
Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Xiwen Liang | Min Lin | Weiqi Ruan | Rongtao Xu | Yuecheng Liu | Jiaqi Chen | Bingqian Lin | Yuzheng Zhuang | Xiaodan Liang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Existing vision-language planning methods perform well on short-horizon tasks but struggle with long-horizon reasoning in dynamic environments due to the difficulty of training models to generate high-quality reasoning processes. To address this, we propose Structured Preference Optimization (SPO), a framework that enhances reasoning and action selection for long-horizon task planning through structured evaluation and optimized training. SPO introduces: 1) Structured Preference Evaluation and Optimization, which evaluates reasoning chains across task relevance, historical consistency (as part of textual coherence), and image awareness (alignment with visual observations) to construct high-quality preference pairs; and 2) Curriculum-Guided Progressive Learning, enabling the model to adapt from simple to complex tasks, thereby improving generalization and robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.