Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model’s output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency. The code is available at https://github.com/shiweijiezero/DIDS.
Large language models (LLMs) have significantly advanced natural language processing, particularly through the integration of external tools and APIs. However, their effectiveness is frequently hampered by parameter mis-filling during tool calling. In this paper, we propose the Hierarchical Tool Error Checklist (HiTEC) framework to systematically diagnose and mitigate tool-calling errors without relying on extensive real-world interactions. HiTEC introduces a two-tiered approach: a global error checklist that identifies common, cross-tool issues, and a local error checklist that targets tool-specific and contextual failures. Building on this structure, we propose two deployments: HiTEC-In Context Learning (HiTEC-ICL) and HiTEC-Kahneman-Tversky Optimization (HiTEC-KTO). HiTEC-ICL embeds the global checklist in the initial prompts and leverages a two-round conversational interaction to dynamically refine parameter handling, while HiTEC-KTO generates high-quality negative examples to drive fine-tuning via preference-based optimization. Extensive experiments across five public datasets demonstrate that our framework significantly improves parameter-filling accuracy and tool-calling success rates compared to baseline methods.
The construct of linguistic complexity has been widely used in language learning research. Several text analysis tools have been created to automatically analyze linguistic complexity. However, the indexes supported by several existing Chinese text analysis tools are limited and different because of different research purposes. CTAP is an open-source linguistic complexity measurement extraction tool, which prompts any research purposes. Although it was originally developed for English, the Unstructured Information Management (UIMA) framework it used allows the integration of other languages. In this study, we integrated the Chinese component into CTAP, describing the index sets it incorporated and comparing it with three linguistic complexity tools for Chinese. The index set includes four levels of 196 linguistic complexity indexes: character level, word level, sentence level, and discourse level. So far, CTAP has implemented automatic calculation of complexity characteristics for four languages, aiming to help linguists without NLP background study language complexity.