Yuanxing Zhang


2025

pdf bib
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Xiao Wang | Jingyun Hua | Weihong Lin | Yuanxing Zhang | Fuzheng Zhang | Jianlong Wu | Di Zhang | Liqiang Nie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. **HAICTrain** comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, **HAICBench** includes 412 manually annotated video-caption pairs and 2,000 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench will be made open-source to facilitate further research.

pdf bib
SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs
Yuanyang Yin | Yaqi Zhao | Yajie Zhang | Yuanxing Zhang | Ke Lin | Jiahao Wang | Xin Tao | Pengfei Wan | Wentao Zhang | Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities by integrating visual and textual inputs, yet modality alignment remains one of the most challenging aspects. Current MLLMs typically rely on simple adapter architectures and pretraining approaches to bridge vision encoders with large language models (LLM), guided by image-level supervision. We identify this paradigm often leads to suboptimal alignment between modalities, significantly constraining the LLM’s ability to properly interpret and reason with visual features particularly for smaller language models. To address this fundamental limitation, we propose Supervised Embedding Alignment (SEA), a token-level supervision alignment method that enables more precise visual-text alignment during pretraining. SEA introduces minimal computational overhead while preserving language capabilities and substantially improving cross-modal understanding. Our comprehensive analyses reveal critical insights into the adapter’s role in multimodal integration, and extensive experiments demonstrate that SEA consistently improves performance across various model sizes, with smaller models benefiting the most (average performance gain of 7.61% for Gemma-2B). This work establishes a foundation for developing more effective alignment strategies for future multimodal systems.

pdf bib
MIO: A Foundation Model on Multimodal Tokens
Zekun Moore Wang | King Zhu | Chunpu Xu | Wangchunshu Zhou | Jiaheng Liu | Yibo Zhang | Jessie Wang | Ning Shi | Siyu Li | Yizhi Li | Haoran Que | Zhaoxiang Zhang | Yuanxing Zhang | Ge Zhang | Ke Xu | Jie Fu | Wenhao Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.

pdf bib
RICO: Improving Accuracy and Completeness in Image Recaptioning via Visual Reconstruction
Yuchi Wang | Yishuo Cai | Shuhuai Ren | Sihan Yang | Linli Yao | Yuanxin Liu | Yuanxing Zhang | Pengfei Wan | Xu Sun
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Image recaptioning is widely used to generate training datasets with enhanced quality for various multimodal tasks. Existing recaptioning methods typically rely on powerful multimodal large language models (MLLMs) to enhance textual descriptions, but often suffer from inaccuracies due to hallucinations and incompleteness caused by missing fine-grained details. To address these limitations, we propose RICO, a novel framework that refines captions through visual reconstruction. Specifically, we leverage a text-to-image model to reconstruct a caption into a reference image, and prompt an MLLM to identify discrepancies between the original and reconstructed images to refine the caption. This process is performed iteratively, further progressively promoting the generation of more faithful and comprehensive descriptions. To mitigate the additional computational cost induced by the iterative process, we introduce RICO-Flash, which learns to generate captions like RICO using DPO. Extensive experiments demonstrate that our approach significantly improves caption accuracy and completeness, outperforms most baselines by approximately 10% on both CapsBench and CompreCap.

pdf bib
Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models
Xinlong Chen | Yuanxing Zhang | Qiang Liu | Junfei Wu | Fuzheng Zhang | Tieniu Tan
Findings of the Association for Computational Linguistics: ACL 2025

Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model’s attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model’s attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. Code is available at https://github.com/xlchen0205/MoD.

pdf bib
VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Xinlong Chen | Yuanxing Zhang | Chongling Rao | Yushuo Guan | Jiaheng Liu | Fuzheng Zhang | Chengru Song | Qiang Liu | Di Zhang | Tieniu Tan
Findings of the Association for Computational Linguistics: ACL 2025

The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.

pdf bib
Generative Frame Sampler for Long Video Understanding
Linli Yao | Haoning Wu | Kun Ouyang | Yuanxing Zhang | Caiming Xiong | Bei Chen | Xu Sun | Junnan Li
Findings of the Association for Computational Linguistics: ACL 2025

Despite recent advances in Video Large Language Models (VideoLLMs), effectively understanding long-form videos remains a significant challenge. Perceiving lengthy videos containing thousands of frames poses substantial computational burden. To mitigate this issue, this paper introduces Generative Frame Sampler (GenS), a plug-and-play module integrated with VideoLLMs to facilitate efficient lengthy video perception. Built upon a lightweight VideoLLM, GenS leverages its inherent vision-language capabilities to identify question-relevant frames. To facilitate effective retrieval, we construct GenS-Video-150K, a large-scale video instruction dataset with dense frame relevance annotations. Extensive experiments demonstrate that GenS consistently boosts the performance of various VideoLLMs, including open-source models (Qwen2-VL-7B, Aria-25B, LLaVA-Video-7B/72B) and proprietary assistants (GPT-4o, Gemini). When equipped with GenS, open-source VideoLLMs achieve impressive state-of-the-art results on long-form video benchmarks: LLaVA-Video-72B reaches 66.8 (+4.3) on LongVideoBench and 77.0 (+2.7) on MLVU, while Aria obtains 39.2 on HourVideo surpassing the Gemini-1.5-pro by 1.9 points.

2024

pdf bib
E2-LLM: Efficient and Extreme Length Extension of Large Language Models
Jiaheng Liu | ZhiqiBai ZhiqiBai | Yuanxing Zhang | Chenchen Zhang | YuangZh YuangZh | Ge Zhang | JiakaiWang JiakaiWang | Haoran Que | Yukang Chen | Wenbo Su | Tiezheng Ge | Jie Fu | Wenhu Chen | Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024

Training Large Language Models (LLMs) to process extensive context lengths incurs prohibitive computational costs. Prevailing techniques for extending context capabilities in LLMs typically require not only additional training procedures but also access to datasets with long context (e.g., sequences of 32K tokens), presupposing substantial GPU expenditures. To address the aforementioned issues, we introduce a novel solution named Efficient and Extreme length extension for Large Language Models (E2-LLM). E2-LLM entails a singular training process over considerably short sequences (e.g., 4K tokens), which greatly mitigates the cost of continual-pretraining or fine-tuning. Within the training phase, we incorporate a dual augmentation strategy with Rotary Position Embeddings (RoPE) that adjusts the scale and position indices across distinct training samples. E 2 -LLM is meticulously designed to enhance the model’s robustness to diverse relative positions. The experimental results on multiple benchmark datasets demonstrate the superior performance of E 2 -LLM on demanding tasks of processing long contexts.

pdf bib
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
Yanan Wu | Jie Liu | Xingyuan Bu | Jiaheng Liu | Zhanhui Zhou | Yuanxing Zhang | Chenchen Zhang | ZhiqiBai ZhiqiBai | Haibin Chen | Tiezheng Ge | Wanli Ouyang | Wenbo Su | Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024

This paper introduces ConceptMath, a bilingual (English and Chinese), fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs). Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systemically organizes math problems under a hierarchy of math concepts, so that mathematical reasoning can be evaluated at different granularity with concept-wise accuracies. Based on our ConcepthMath, we then evaluate a broad range of LLMs, and we observe existing LLMs, though achieving high average accuracies on traditional benchmarks, exhibit significant performance variations across different math concepts and may even fail catastrophically on the most basic ones. Besides, we also introduce an efficient fine-tuning strategy to enhance the weaknesses of existing LLMs. Finally, we hope ConceptMath could guide the developers to understand the fine-grained mathematical abilities of their models and facilitate the growth of foundation models. Code is available at https://github.com/conceptmath/conceptmath.