Yuan Chang
2025
TreeReview: A Dynamic Tree of Questions Framework for Deep and Efficient LLM-based Scientific Peer Review
Yuan Chang
|
Ziyue Li
|
Hengyuan Zhang
|
Yuanbo Kong
|
Yanru Wu
|
Hayden Kwok-Hay So
|
Zhijiang Guo
|
Liya Zhu
|
Ngai Wong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
While Large Language Models (LLMs) have shown significant potential in assisting peer review, current methods often struggle to generate thorough and insightful reviews while maintaining efficiency. In this paper, we propose TreeReview, a novel framework that models paper review as a hierarchical and bidirectional question-answering process. TreeReview first constructs a tree of review questions by recursively decomposing high-level questions into fine-grained sub-questions and then resolves the question tree by iteratively aggregating answers from leaf to root to get the final review. Crucially, we incorporate a dynamic question expansion mechanism to enable deeper probing by generating follow-up questions when needed. We construct a benchmark derived from ICLR and NeurIPS venues to evaluate our method on full review generation and actionable feedback comments generation tasks. Experimental results of both LLM-based and human evaluation show that TreeReview outperforms strong baselines in providing comprehensive, in-depth, and expert-aligned review feedback, while reducing LLM token usage by up to 80% compared to computationally intensive approaches.
2024
Guiding Large Language Models via External Attention Prompting for Scientific Extreme Summarization
Yuan Chang
|
Ziyue Li
|
Xiaoqiu Le
Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)
Scientific extreme summarization, the task of generating concise one-sentence summaries (TLDRs) for scientific papers, presents significant challenges due to the need for deep domain-specific understanding and the ability to distill salient information. This study identifies the critical role of titles and keywords in enhancing TLDR generation through quantitative analysis. We propose a novel method, External Attention Prompting (EAP), which leverages LLMs by guiding them to focus on the most critical parts of the source text through varying degrees of attention signals. Our method employs Markdown emphasis syntax to annotate attention levels, enabling LLMs to prioritize salient information effectively. Extensive experiments demonstrate that EAP significantly outperforms baseline methods across various LLMs and metrics in both zero-shot and few-shot settings. Further evaluations by GPT-4 demonstrate that EAP can enable LLMs to generate TLDRs of higher human-aligned quality.
Simulating Expert Discussions with Multi-agent for Enhanced Scientific Problem Solving
Ziyue Li
|
Yuan Chang
|
Xiaoqiu Le
Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)
Large Language Models (LLMs) have shown remarkable potential across various domains, yet their application in addressing complex scientific problems remains a formidable challenge. This paper presents a novel methodology to augment the problem-solving capabilities of LLMs by assigning them roles as domain-specific experts. By simulating a panel of experts, each LLM is tasked with delivering professional and cautious responses to scientific inquiries. Our approach involves querying multiple LLMs and assessing the consistency of their responses. High agreement among the LLMs suggests greater confidence in the proposed solution, whereas discrepancies prompt a collaborative discussion among the LLMs to reach a consensus. This method emulates real-world scientific problem-solving processes, fostering a more reliable and robust mechanism for LLMs to tackle scientific questions. Our experimental results show that assigning roles to multiple LLMs as domain-specific experts significantly improves their accuracy and reliability in solving scientific problems. This framework has the potential to advance the application of AI in scientific research, enhancing its effectiveness and trustworthiness.
Search
Fix author
Co-authors
- Ziyue Li 3
- Xiaoqiu Le 2
- Zhijiang Guo 1
- Yuanbo Kong 1
- Hayden Kwok-Hay So 1
- show all...