Yiyang Zhou


2025

pdf bib
GLIMPSE: Do Large Vision-Language Models Truly Think With Videos or Just Glimpse at Them?
Yiyang Zhou | Linjie Li | Shi Qiu | Zhengyuan Yang | Yuyang Zhao | Siwei Han | Yangfan He | Kangqi Li | Haonian Ji | Zihao Zhao | Haibo Tong | Lijuan Wang | Huaxiu Yao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Existing video benchmarks often resemble image-based benchmarks, with question types like “What actions does the person perform throughout the video?” or “What color is the woman’s dress in the video?” For these, models can often answer by scanning just a few key frames, without deep temporal reasoning. This limits our ability to assess whether large vision-language models (LVLMs) can truly think with videos rather than perform superficial frame-level analysis. To address this, we introduce , a benchmark specifically designed to evaluate whether LVLMs can genuinely think with videos. Unlike prior benchmarks, emphasizes comprehensive video understanding beyond static image cues. It consists of 3,269 videos and over 4,342 highly visual-centric questions across 11 categories, including Trajectory Analysis, Temporal Reasoning, and Forensics Detection. All questions are carefully crafted by human annotators and require watching the entire video and reasoning over full video context—this is what we mean by thinking with video. These questions cannot be answered by scanning selected frames or relying on text alone. In human evaluations, achieves 94.82% accuracy, but current LVLMs face significant challenges. Even the best-performing model, GPT-o3, reaches only 66.43%, highlighting that LVLMs still struggle to move beyond surface-level reasoning to truly think with videos. We publicly release our benchmark and code at https://github.com/aiming-lab/GLIMPSE.

pdf bib
Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement
Xiyao Wang | Jiuhai Chen | Zhaoyang Wang | Yuhang Zhou | Yiyang Zhou | Huaxiu Yao | Tianyi Zhou | Tom Goldstein | Parminder Bhatia | Taha Kass-Hout | Furong Huang | Cao Xiao
Findings of the Association for Computational Linguistics: NAACL 2025

Large vision-language models (LVLMs) have achieved impressive results in visual question-answering and reasoning tasks through vision instruction tuning on specific datasets. However, there remains significant room for improvement in aligning visual and language modalities. Existing methods often depend on external models or data, leading to uncontrollable and unstable alignment results. In this paper, we propose SIMA, a self-improvement framework that enhances visual and language modality alignment without external dependencies. SIMA leverages existing vision instruction tuning datasets to self-generate responses, incorporating an in-context self-critic mechanism that constructs preference pairs for tuning. Crucially, our approach allows LVLMs to act as critics by designing effective critic prompts, eliminating the need for additional fine-tuning with external instruction data. We introduce three novel visual metrics within the self-critic process to guide judgement, significantly improving the accuracy of self-critic. Through extensive experiments across 14 hallucination and comprehensive benchmarks, we demonstrate that SIMA significantly improves LVLM’s performance and outperforms previous approaches, achieving superior modality alignment.