Yiwei Lou


2025

pdf bib
DatawiseAgent: A Notebook-Centric LLM Agent Framework for Adaptive and Robust Data Science Automation
Ziming You | Yumiao Zhang | Dexuan Xu | Yiwei Lou | Yandong Yan | Wei Wang | Huamin Zhang | Yu Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Existing large language model (LLM) agents for automating data science show promise, but they remain constrained by narrow task scopes, limited generalization across tasks and models, and over-reliance on state-of-the-art (SOTA) LLMs. We introduce DatawiseAgent, a notebook-centric LLM agent framework for adaptive and robust data science automation. Inspired by how human data scientists work in computational notebooks, DatawiseAgent introduces a unified interaction representation and a multi-stage architecture based on finite-state transducers (FSTs). This design enables flexible long-horizon planning, progressive solution development, and robust recovery from execution failures. Extensive experiments across diverse data science scenarios and models show that DatawiseAgent consistently achieves SOTA performance by surpassing strong baselines such as AutoGen and TaskWeaver, demonstrating superior effectiveness and adaptability. Further evaluations reveal graceful performance degradation under weaker or smaller models, underscoring the robustness and scalability.

2024

pdf bib
EVIT: Event-Oriented Instruction Tuning for Event Reasoning
Zhengwei Tao | Xiancai Chen | Zhi Jin | Xiaoying Bai | Haiyan Zhao | Yiwei Lou
Findings of the Association for Computational Linguistics: ACL 2024

Events refer to specific occurrences, incidents, or happenings that take place under a particular background. Event reasoning aims to infer events according to certain relations and predict future events. The cutting-edge techniques for event reasoning play a crucial role in various natural language processing applications. Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities. However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks. This discrepancy arises from the absence of explicit modeling of events and the interconnections of them within their instruction data. Consequently, these models face challenges in comprehending event structures and semantics while struggling to bridge the gap between their interpretations and human understanding of events. Additionally, their limitations in grasping event relations lead to constrained event reasoning abilities to effectively deduce and incorporate pertinent event knowledge. In this paper, we propose Event-Oriented Instruction Tuning to train our large language model named EvIT specializing in event reasoning tasks. Specifically, we first propose a novel structure named event quadruple which contains the structure and semantics of events and is complete in the event representation. We then design event-relation learning based on the structures. We encapsulate the learning into the instruction-tuning formulation to better stimulate the event reasoning capacity of our model. To implement our training, we design a heuristic unsupervised method to mine event quadruple from a large-scale corpus. At last, we finetune a Llama model on our Event-Oriented Instruction Tuning. We conduct extensive experiments on event reasoning tasks on several datasets. Automatic and human evaluations demonstrate EvIT achieves competitive performances on event reasoning.