Large language models hold promise for addressing medical challenges, such as medical diagnosis reasoning, research knowledge acquisition, clinical decision-making, and consumer health inquiry support. However, they often generate hallucinations due to limited medical knowledge. Incorporating external knowledge is therefore critical, which necessitates multi-source knowledge acquisition. We address this challenge by framing it as a source planning problem, which is to formulate context-appropriate queries tailored to the attributes of diverse sources. Existing approaches either overlook source planning or fail to achieve it effectively due to misalignment between the model’s expectation of the sources and their actual content. To bridge this gap, we present MedOmniKB, a repository comprising multigenre and multi-structured medical knowledge sources. Leveraging these sources, we propose the Source Planning Optimisation method, which enhances multi-source utilisation. Our approach involves enabling an expert model to explore and evaluate potential plans while training a smaller model to learn source alignment. Experimental results demonstrate that our method substantially improves multi-source planning performance, enabling the optimised small model to achieve state-of-the-art results in leveraging diverse medical knowledge sources.
The reliability of large language models remains a critical challenge, particularly due to their susceptibility to hallucinations and factual inaccuracies during text generation. Existing solutions either underutilize models’ self-correction with preemptive strategies or use costly post-hoc verification. To further explore the potential of real-time self-verification and correction, we present Dynamic Self-Verify Decoding (DSVD), a novel decoding framework that enhances generation reliability through real-time hallucination detection and efficient error correction. DSVD integrates two key components: (1) parallel self-verification architecture for continuous quality assessment, (2) dynamic rollback mechanism for targeted error recovery. Extensive experiments across five benchmarks demonstrate DSVD’s effectiveness, achieving significant improvement in truthfulness (Quesetion-Answering) and factual accuracy (FActScore). Results show the DSVD can be further incorporated with existing faithful decoding methods to achieve stronger performance. Our work establishes that real-time self-verification during generation offers a viable path toward more trustworthy language models without sacrificing practical deployability.
Structured data offers an efficient means of organizing information. Exsisting text-serialization based methods for processing structured data using large language models (LLMs) are not designed to explicitly capture the heterogeneity of structured data. Such methods are suboptimal for LLMs to process structured data, and may lead to large input token size and poor robustness to input perturbation. In this paper, we propose a novel framework called DictLLM, which is an efficient and effective framework for the modeling of medical lab report to deal with the report-assisted diagnosis generation task. DictLLM introduce 1) group positional encoding to maintain the permutation invariance, 2) hierarchical attention bias to capture the inductive bias of structured data, and 3) a optimal transport alignment layer to align the embeddings generated by the dict encoder with the LLM, producing a list of fixed-length virtual tokens. We conduct experiments with multiple LLM models on a large-scale real-world medical lab report dataset for automatic diagnosis generation. The results show that our proposed framework outperforms the baseline methods and few-shot GPT-4 in terms of both Rouge-L and Knowledge F1 score. We also conduct multiple experiments and analyze the scalability and robustness of our proposed framework, demonstrating the superiority of our method in modeling the heterogeneous structure of medical dictionaries data.