Yipeng Yu


2025

pdf bib
SEAL: Structure and Element Aware Learning Improves Long Structured Document Retrieval
Xinhao Huang | Zhibo Ren | Yipeng Yu | Ying Zhou | Zulong Chen | Zeyi Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In long structured document retrieval, existing methods typically fine-tune pre-trained language models (PLMs) using contrastive learning on datasets lacking explicit structural information. This practice suffers from two critical issues: 1) current methods fail to leverage structural features and element-level semantics effectively, and 2) the lack of datasets containing structural metadata. To bridge these gaps, we propose SEAL, a novel contrastive learning framework. It leverages structure-aware learning to preserve semantic hierarchies and masked element alignment for fine-grained semantic discrimination. Furthermore, we release StructDocRetrieval, a long structured document retrieval dataset with rich structural annotations. Extensive experiments on both the released and industrial datasets across various modern PLMs, and online A/B testing demonstrate consistent improvements, boosting NDCG@10 from 73.96% to 77.84% on BGE-M3. The resources are available at https://github.com/xinhaoH/SEAL.

2020

pdf bib
When and Who? Conversation Transition Based on Bot-Agent Symbiosis Learning Network
Yipeng Yu | Ran Guan | Jie Ma | Zhuoxuan Jiang | Jingchang Huang
Proceedings of the 28th International Conference on Computational Linguistics

In online customer service applications, multiple chatbots that are specialized in various topics are typically developed separately and are then merged with other human agents to a single platform, presenting to the users with a unified interface. Ideally the conversation can be transparently transferred between different sources of customer support so that domain-specific questions can be answered timely and this is what we coined as a Bot-Agent symbiosis. Conversation transition is a major challenge in such online customer service and our work formalises the challenge as two core problems, namely, when to transfer and which bot or agent to transfer to and introduces a deep neural networks based approach that addresses these problems. Inspired by the net promoter score (NPS), our research reveals how the problems can be effectively solved by providing user feedback and developing deep neural networks that predict the conversation category distribution and the NPS of the dialogues. Experiments on realistic data generated from an online service support platform demonstrate that the proposed approach outperforms state-of-the-art methods and shows promising perspective for transparent conversation transition.