Yingqian Min


2025

pdf bib
Towards Effective and Efficient Continual Pre-training of Large Language Models
Jie Chen | Zhipeng Chen | Jiapeng Wang | Kun Zhou | Yutao Zhu | Jinhao Jiang | Yingqian Min | Xin Zhao | Zhicheng Dou | Jiaxin Mao | Yankai Lin | Ruihua Song | Jun Xu | Xu Chen | Rui Yan | Zhewei Wei | Di Hu | Wenbing Huang | Ji-Rong Wen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. In this paper, we comprehensively study its key designs to balance the new abilities while retaining the original abilities, and present an effective CPT method that can greatly improve the Chinese language ability and scientific reasoning ability of LLMs. To achieve it, we design specific data mixture and curriculum strategies based on existing datasets and synthetic high-quality data. Concretely, we synthesize multidisciplinary scientific QA pairs based on related web pages to guarantee the data quality, and also devise the performance tracking and data mixture adjustment strategy to ensure the training stability. For the detailed designs, we conduct preliminary studies on a relatively small model, and summarize the findings to help optimize our CPT method. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of Llama-3 (8B), including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval). Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.

pdf bib
Unlocking General Long Chain-of-Thought Reasoning Capabilities of Large Language Models via Representation Engineering
Xinyu Tang | Xiaolei Wang | Zhihao Lv | Yingqian Min | Xin Zhao | Binbin Hu | Ziqi Liu | Zhiqiang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in long chain-of-thoughts (long CoTs) have significantly improved the reasoning capabilities of large language models (LLMs). Existing work finds that the capability of long CoT reasoning can be efficiently elicited by tuning on only a few examples and can easily transfer to other tasks. This motivates us to investigate whether long CoT reasoning is a general capability for LLMs. In this work, we conduct an empirical analysis for this question from the perspective of representation. We find that LLMs do encode long CoT reasoning as a general capability, with a clear distinction from vanilla CoTs. Furthermore, domain-specific representations are also required for the effective transfer of long CoT reasoning. Inspired by these findings, we propose GLORE, a novel representation engineering method to unleash the general long CoT reasoning capabilities of LLMs. Extensive experiments demonstrate the effectiveness and efficiency of GLORE in both in-domain and cross-domain scenarios. The code is available at https://github.com/txy77/GLoRE.

pdf bib
Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Jie Chen | Jinhao Jiang | Yingqian Min | Zican Dong | Shijie Wang | Xin Zhao | Ji-Rong Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions—termed stickers—which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

pdf bib
Enhancing Chain-of-Thought Reasoning via Neuron Activation Differential Analysis
Yiru Tang | Kun Zhou | Yingqian Min | Xin Zhao | Jing Sha | Zhichao Sheng | Shijin Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Despite the impressive chain-of-thought(CoT) reasoning ability of large language models (LLMs), its underlying mechanisms remains unclear. In this paper, we explore the inner workings of LLM’s CoT ability via the lens of neurons in the feed-forward layers. We propose an efficient method to identify reasoning-critical neurons by analyzing their activation patterns under reasoning chains of varying quality. Based on it, we devise a rather simple intervention method that directly stimulates these reasoning-critical neurons, to guide the generation of high-quality reasoning chains. Extended experiments validate the effectiveness of our method and demonstrate the critical role these identified neurons play in CoT reasoning.

2024

pdf bib
LLMBox: A Comprehensive Library for Large Language Models
Tianyi Tang | Hu Yiwen | Bingqian Li | Wenyang Luo | ZiJing Qin | Haoxiang Sun | Jiapeng Wang | Shiyi Xu | Xiaoxue Cheng | Geyang Guo | Han Peng | Bowen Zheng | Yiru Tang | Yingqian Min | Yushuo Chen | Jie Chen | Ranchi Zhao | Luran Ding | Yuhao Wang | Zican Dong | Xia Chunxuan | Junyi Li | Kun Zhou | Xin Zhao | Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at https://github.com/RUCAIBox/LLMBox.

pdf bib
DATA-CUBE: Data Curriculum for Instruction-based Sentence Representation Learning
Yingqian Min | Kun Zhou | Dawei Gao | Xin Zhao | He Hu | Yaliang Li
Findings of the Association for Computational Linguistics: ACL 2024

Recently, multi-task instruction tuning has been utilized to improve sentence representation learning (SRL). It enables SRL models to generate task-specific representations with the guidance of task instruction, thus exhibiting strong generalization ability on unseen tasks. However, these methods mostly neglect the potential interference problems across different tasks and instances, which may affect the training of the model.To address this issue, we propose a data curriculum method, namely **Data-CUBE**, that arranges the order of all the multi-task data for training, to minimize the interference risks from two aspects.At the task level, we aim to find the optimal task order to minimize the total cross-task interference risk and formulate this problem as the traveling salesman problem, which is further solved by a specially designed simulated annealing algorithm. At the instance level, we propose a measurement method to quantify the difficulty of all instances per task, and then arrange instances in an easy-to-difficult order for training.Experimental results show that our approach can boost the performance of state-of-the-art methods. Our code and data will be publicly released.