Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms.However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs.To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI.TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds.TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment.Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
Identifying attribute values from product profiles is a key task for improving product search, recommendation, and business analytics on e-commerce platforms, which we called Product Attribute Value Identification (PAVI) . However, existing PAVI methods face critical challenges, such as cascading errors, inability to handle out-of-distribution (OOD) attribute values, and lack of generalization capability. To address these limitations, we introduce Multi-Value-Product Retrieval-Augmented Generation (MVP-RAG), combining the strengths of retrieval, generation, and classification paradigms. MVP-RAG defines PAVI as a retrieval-generation task, where the product title description serves as the query, and products and attribute values act as the corpus. It first retrieves similar products of the same category and candidate attribute values, and then generates the standardized attribute values. The key advantages of this work are: (1) the proposal of a multi-level retrieval scheme, with products and attribute values as distinct hierarchical levels in PAVI domain (2) attribute value generation of large language model to significantly alleviate the OOD problem and (3) its successful deployment in a real-world industrial environment. Extensive experimental results on the dataset demonstrate that the proposed method performs better than the state-of-the-art baselines.
Multimodal named entity recognition (MNER) for tweets has received increasing attention recently. Most of the multimodal methods used attention mechanisms to capture the text-related visual information. However, unrelated or weakly related text-image pairs account for a large proportion in tweets. Visual clues unrelated to the text would incur uncertain or even negative effects for multimodal model learning. In this paper, we propose a novel pre-trained multimodal model based on Relationship Inference and Visual Attention (RIVA) for tweets. The RIVA model controls the attention-based visual clues with a gate regarding the role of image to the semantics of text. We use a teacher-student semi-supervised paradigm to leverage a large unlabeled multimodal tweet corpus with a labeled data set for text-image relation classification. In the multimodal NER task, the experimental results show the significance of text-related visual features for the visual-linguistic model and our approach achieves SOTA performance on the MNER datasets.