Yilei Wang


2025

pdf bib
Improving Low-Resource Sequence Labeling with Knowledge Fusion and Contextual Label Explanations
Peichao Lai | Jiaxin Gan | Feiyang Ye | Wentao Zhang | Fangcheng Fu | Yilei Wang | Bin Cui
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Sequence labeling remains a significant challenge in low-resource, domain-specific scenarios, particularly for character-dense languages. Existing methods primarily focus on enhancing model comprehension and improving data diversity to boost performance. However, these approaches still struggle with inadequate model applicability and semantic distribution biases in domain-specific contexts. To overcome these limitations, we propose a novel framework that combines an LLM-based knowledge enhancement workflow with a span-based Knowledge Fusion for Rich and Efficient Extraction (KnowFREE) model. Our workflow employs explanation prompts to generate precise contextual interpretations of target entities, effectively mitigating semantic biases and enriching the model’s contextual understanding. The KnowFREE model further integrates extension label features, enabling efficient nested entity extraction without relying on external knowledge during inference. Experiments on multiple domain-specific sequence labeling datasets demonstrate that our approach achieves state-of-the-art performance, effectively addressing the challenges posed by low-resource settings.

2024

pdf bib
Quantum-inspired Language Model with Lindblad Master Equation and Interference Measurement for Sentiment Analysis
Kehuan Yan | Peichao Lai | Yilei Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Quantum-inspired models have demonstrated superior performance in many downstream language tasks, such as question answering and sentiment analysis. However, recent models primarily focus on embedding and measurement operations, overlooking the significance of the quantum evolution process. In this work, we present a novel quantum-inspired neural network, LI-QiLM, which integrates the Lindblad Master Equation (LME) to model the evolution process and the interferometry to the measurement process, providing more physical meaning to strengthen the interpretability. We conduct comprehensive experiments on six sentiment analysis datasets. Compared to the traditional neural networks, transformer-based pre-trained models and quantum-inspired models, such as CICWE-QNN and ComplexQNN, the proposed method demonstrates superior performance in accuracy and F1-score on six commonly used datasets for sentiment analysis. Additional ablation tests verify the effectiveness of LME and interferometry.

2022

pdf bib
PCBERT: Parent and Child BERT for Chinese Few-shot NER
Peichao Lai | Feiyang Ye | Lin Zhang | Zhiwei Chen | Yanggeng Fu | Yingjie Wu | Yilei Wang
Proceedings of the 29th International Conference on Computational Linguistics

Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach’s effectiveness in few-shot learning.