Translationese refers to linguistic properties that usually occur in translated texts. Previous works study translationese by framing it as a binary classification between original texts and translated texts. In this paper, we argue that translationese should be graded instead of binary and propose the first measure for translationese—the translationese-index (T-index), computed from the likelihood ratios of two contrastively fine-tuned language models (LMs). We use synthesized translations and translations in the wild to evaluate T-index’s generalizability in cross-domain settings and its validity against human judgments.Our results show that T-index can generalize to unseen genres, authors, and language pairs. Moreover, T-index computed using two 0.5B LMs fine-tuned on only 1-5k pairs of synthetic data can effectively capture translationese, as demonstrated by alignment with human pointwise ratings and pairwise judgments.Additionally, the correlation between T-index and existing machine translation (MT) quality estimation (QE) metrics such as BLEU and COMET is low, suggesting that T-index is not covered by these metrics andcan serve as a complementary metric in MT QE.
We ask whether contemporary LLMs are able to perform natural language inference (NLI) tasks on mathematical texts. We call this the Math NLI problem. We construct a corpus of Math NLI pairs whose premises are from extant mathematical text and whose hypotheses and gold labels were provided by people with experience in both research-level mathematics and also in the NLI field. We also investigate the quality of corpora using the same premises but whose hypotheses are provided by LLMs themselves. We not only investigate the performance but also the inter-group consistency of the diverse group of LLMs. We have both positive and negative findings. Among our positive findings: in some settings, using a majority vote of LLMs is approximately equivalent to using human-labeled data in the Math NLI area. On the negative side: LLMs still struggle with mathematical language. They occasionally fail at even basic inferences. Current models are not as prone to hypothesis-only “inference” in our data the way the previous generation had been. In addition to our findings, we also provide our corpora as data to support future work on Math NLI.
In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability—MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language—Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks.