Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model’s utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs–a key subset of the LLM family–have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
Recent advances in large reasoning models (LRMs) have enabled strong multi-step reasoning capabilities. However, existing machine unlearning algorithms are tailored to standard language modeling and fail to address the unique challenges posed by LRMs. In this work, we present the first systematic study of LRM unlearning and reveal that conventional unlearning methods often overlook critical information leakage in reasoning traces, even when final answers are successfully removed. To address this, we propose Reasoning-aware Representation Misdirection for Unlearning (R2MU), a method that suppresses sensitive reasoning traces while preserving the model’s general reasoning ability. Our experiments demonstrate that R2MU significantly reduces reasoning trace leakage and achieves strong performance across both reasoning and safety benchmarks, including WMDP, StrongReject, JBB-Behaviors and WildJailbreak, under state-of-the-art models such as DeepSeek-R1-Distill-LLaMA-8B and DeepSeek-R1-Distill-Qwen-14B. To the best of our knowledge, MU is the first principled approach to both expose and mitigate reasoning trace leakage in LRM unlearning, while preserving reasoning ability.
Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility beyond the scope of unlearning. While interest in studying LLM unlearning is growing, the impact of the optimizer choice for LLM unlearning remains unexplored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order optimization-based LLM unlearning framework, termed Second-Order UnLearning (SOUL), which extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, indicating that second-order optimization offers an effective and broadly applicable solution for LLM unlearning.