Yibo Miao


2025

pdf bib
Qwen2.5-xCoder: Multi-Agent Collaboration for Multilingual Code Instruction Tuning
Jian Yang | Wei Zhang | Yibo Miao | Shanghaoran Quan | Zhenhe Wu | Qiyao Peng | Liqun Yang | Tianyu Liu | Zeyu Cui | Binyuan Hui | Junyang Lin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancement in code understanding and generation demonstrates that code LLMs fine-tuned on a high-quality instruction dataset can gain powerful capabilities to address wide-ranging code-related tasks. However, most previous existing methods mainly view each programming language in isolation and ignore the knowledge transfer among different programming languages. To bridge the gap among different programming languages, we introduce a novel multi-agent collaboration framework to enhance multilingual instruction tuning for code LLMs, where multiple language-specific intelligent agent components with generation memory work together to transfer knowledge from one language to another efficiently and effectively. Specifically, we first generate the language-specific instruction data from the code snippets and then provide the generated data as the seed data for language-specific agents. Multiple language-specific agents discuss and collaborate to formulate a new instruction and its corresponding solution (A new programming language or existing programming language), To further encourage the cross-lingual transfer, each agent stores its generation history as memory and then summarizes its merits and faults. Finally, the high-quality multilingual instruction data is used to encourage knowledge transfer among different programming languages to train Qwen2.5-xCoder. Experimental results on multilingual programming benchmarks demonstrate the superior performance of Qwen2.5-xCoder in sharing common knowledge, highlighting its potential to reduce the cross-lingual gap.

pdf bib
CodeArena: Evaluating and Aligning CodeLLMs on Human Preference
Jian Yang | Jiaxi Yang | Wei Zhang | Jin Ke | Yibo Miao | Lei Zhang | Liqun Yang | Zeyu Cui | Yichang Zhang | Zhoujun Li | Binyuan Hui | Junyang Lin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We present CodeArena to emulate the complexity/diversity of real-world coding tasks, spanning 40 categories and 44 PLs. A 20B diverse synthetic instruction corpus is created by scaling instructions to help Qwen2.5-SynCoder achieve SOTA performance. Abstract: Code large language models (codeLLMs) have made significant strides in code generation. Most previous code-related benchmarks, which consist of various programming exercises along with the corresponding test cases, are used as a common measure to evaluate the performance and capabilities of code LLMs. However, the current code LLMs focus on synthesizing the correct code snippet, ignoring the alignment with human preferences, where the query should be sampled from the practical application scenarios and the model-generated responses should satisfy the human preference. To bridge the gap between the model-generated response and human preference, we present a rigorous human-curated benchmark CodeArena to emulate the complexity and diversity of real-world coding tasks, where 397 high-quality samples spanning 40 categories and 44 programming languages, carefully curated from user queries. Further, we propose a diverse synthetic instruction corpus SynCode-Instruct (nearly 20B tokens) by scaling instructions from the website to verify the effectiveness of the large-scale synthetic instruction fine-tuning, where Qwen2.5-SynCoder totally trained on synthetic instruction data can achieve top-tier performance of open-source code LLMs. The results find performance differences between execution-based benchmarks and CodeArena. Our systematic experiments of CodeArena on 40+ LLMs reveal a notable performance gap between open SOTA code LLMs (e.g. Qwen2.5-Coder) and proprietary LLMs (e.g., OpenAI o1), underscoring the importance of the human preference alignment.

pdf bib
Towards A Better Initial Policy Model For Scalable Long-CoT Reinforcement Learning
Bofei Gao | Yejie Wang | Yibo Miao | Ruoyu Wu | Feifan Song | Longhui Yu | Tianyu Liu | Baobao Chang
Findings of the Association for Computational Linguistics: ACL 2025

Long-CoT reasoning combined with reinforcement learning for large language models demonstrates remarkable performance and scalability. However, we observe that the initial policy model could significantly influence the final performance as well as the token efficiency. Additionally, there is a lack of systematic guidelines for obtaining a better initial policy model. To bridge this gap, we initiate a comprehensive investigation by activating the initial model using a variety of datasets with different data volumes and reasoning patterns. Then, we conduct a thorough analysis and comparison of the RL process for different initial models from the perspectives of upper bounds, diversity, and token efficiency, providing a deeper understanding and insight into the long-CoT RL. Based on our empirical results, we propose a systematic guideline and a novel Re-RFT method for constructing a better RL start point. Our experiment results based on the 14B model surpass the DeepSeek-R1-Distill-Qwen-14B by an average of 4.6%, demonstrating our approach’s effectiveness and superiority.

2024

pdf bib
Measuring Bargaining Abilities of LLMs: A Benchmark and A Buyer-Enhancement Method
Tian Xia | Zhiwei He | Tong Ren | Yibo Miao | Zhuosheng Zhang | Yang Yang | Rui Wang
Findings of the Association for Computational Linguistics: ACL 2024

Bargaining is an important and unique part of negotiation between humans. As LLM-driven agents learn to negotiate and act like real humans, how to evaluate agents’ bargaining abilities remains an open problem.For the first time, we formally described the Bargaining task as an asymmetric incomplete information game, defining the gains of the Buyer and Seller in multiple bargaining processes. It allows us to quantitatively assess an agent’s performance in the Bargain task.We collected a real product price dataset, AmazonHistoryPrice, and conducted evaluations of various LLM agents’ bargaining abilities. We find that playing a Buyer is much harder than a Seller, and increasing model size can not effectively improve the Buyer’s performance.To address the challenge, we propose a novel approach called OG-Narrator that integrates a deterministic Offer Generator to control the price range of Buyer’s offers, and an LLM Narrator to create natural language sentences for generated offers.Experimental results show that OG-Narrator improves the buyer’s deal rates from 26.67% to 88.88% and brings a ten times multiplication of profits on all baselines, even a model that has not been aligned.

pdf bib
Efficient Detection of LLM-generated Texts with a Bayesian Surrogate Model
Yibo Miao | Hongcheng Gao | Hao Zhang | Zhijie Deng
Findings of the Association for Computational Linguistics: ACL 2024

The detection of machine-generated text, especially from large language models (LLMs), is crucial in preventing serious social problems resulting from their misuse. Some methods train dedicated detectors on specific datasets but fall short in generalizing to unseen test data, while other zero-shot ones often yield suboptimal performance. Although the recent DetectGPT has shown promising detection performance, it suffers from significant inefficiency issues, as detecting a single candidate requires querying the source LLM with hundreds of its perturbations. This paper aims to bridge this gap. Concretely, we propose to incorporate a Bayesian surrogate model, which allows us to select typical samples based on Bayesian uncertainty and interpolate scores from typical samples to other samples, to improve query efficiency. Empirical results demonstrate that our method significantly outperforms existing approaches under a low query budget. Notably, when detecting the text generated by LLaMA family models, our method with just 2 or 3 queries can outperform DetectGPT with 200 queries.

pdf bib
AdaMoE: Token-Adaptive Routing with Null Experts for Mixture-of-Experts Language Models
Zihao Zeng | Yibo Miao | Hongcheng Gao | Hao Zhang | Zhijie Deng
Findings of the Association for Computational Linguistics: EMNLP 2024

Mixture of experts (MoE) has become the standard for constructing production-level large language models (LLMs) due to its promise to boost model capacity without causing significant overheads. Nevertheless, existing MoE methods usually enforce a constant top-k routing for all tokens, which is arguably restrictive because various tokens (e.g., "<EOS>” vs. “apple”) may require various numbers of experts for feature abstraction. Lifting such a constraint can help make the most of limited resources and unleash the potential of the model for downstream tasks. In this sense, we introduce **AdaMoE** to realize token-adaptive routing for MoE, where different tokens are permitted to select a various number of experts. AdaMoE makes minimal modifications to the vanilla MoE with top-k routing—it simply introduces a fixed number of *null experts*, which do not consume any FLOPs, to the expert set and increases the value of k. AdaMoE does not force each token to occupy a fixed number of null experts but ensures the average usage of the null experts with a load-balancing loss, leading to an adaptive number of null/true experts used by each token. AdaMoE exhibits a strong resemblance to MoEs with expert choice routing while allowing for trivial auto-regressive modeling. AdaMoE is easy to implement and can be effectively applied to pre-trained (MoE-)LLMs. Extensive studies show that AdaMoE can reduce average expert load (FLOPs) while achieving superior performance. For example, on the ARC-C dataset, applying our method to fine-tuning Mixtral-8x7B can reduce FLOPs by 14.5% while increasing accuracy by 1.69%.Code is available at [this link](https://github.com/CengZihao/AdaMoE).