Yaowei Zheng


2025

pdf bib
Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents
Ziyang Miao | Qiyu Sun | Jingyuan Wang | Yuchen Gong | Yaowei Zheng | Shiqi Li | Richong Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Large language models (LLMs) have shown impressive performance on general-purpose tasks, yet adapting them to specific domains remains challenging due to the scarcity of high-quality domain data. Existing data synthesis tools often struggle to extract reliable fine-tuning data from heterogeneous documents effectively. To address this limitation, we propose Easy Dataset, a unified framework for synthesizing fine-tuning data from unstructured documents via an intuitive graphical user interface (GUI). Specifically, Easy Dataset allows users to easily configure text extraction models and chunking strategies to transform raw documents into coherent text chunks. It then leverages a persona-driven prompting approach to generate diverse question-answer pairs using public-available LLMs. Throughout the pipeline, a human-in-the-loop visual interface facilitates the review and refinement of intermediate outputs to ensure data quality. Experiments on a financial question-answering task show that fine-tuning LLMs on the synthesized dataset significantly improves domain-specific performance while preserving general knowledge. The source code and installable package are available at https://github.com/ConardLi/easy-dataset and have garnered over 10,000 GitHub stars.

2024

pdf bib
LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
Yaowei Zheng | Richong Zhang | Junhao Zhang | Yanhan Ye | Zheyan Luo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It provides a solution for flexibly customizing the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and received over 25,000 stars and 3,000 forks.