Yao Wang


2025

pdf bib
Not All Parameters Are Created Equal: Smart Isolation Boosts Fine-Tuning Performance
Yao Wang | Di Liang | Minlong Peng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Supervised fine-tuning (SFT) is a pivotal approach to adapting large language models (LLMs) for downstream tasks; however, performance often suffers from the “seesaw phenomenon”, where indiscriminate parameter updates yield progress on certain tasks at the expense of others. To address this challenge, we propose a novel Core Parameter Isolation Fine-Tuning (CPI-FT) framework. Specifically, we first independently fine-tune the LLM on each task to identify its core parameter regions by quantifying parameter update magnitudes. Tasks with similar core regions are then grouped based on region overlap, forming clusters for joint modeling. We further introduce a parameter fusion technique: for each task, core parameters from its individually fine-tuned model are directly transplanted into a unified backbone, while non-core parameters from different tasks are smoothly integrated via Spherical Linear Interpolation (SLERP), mitigating destructive interference. A lightweight, pipelined SFT training phase using mixed-task data is subsequently employed, while freezing core regions from prior tasks to prevent catastrophic forgetting. Extensive experiments on multiple public benchmarks demonstrate that our approach significantly alleviates task interference and forgetting, consistently outperforming vanilla multi-task and multi-stage fine-tuning baselines.

2020

pdf bib
Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking
Jianguo Zhang | Kazuma Hashimoto | Chien-Sheng Wu | Yao Wang | Philip Yu | Richard Socher | Caiming Xiong
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

Dialog state tracking (DST) is a core component in task-oriented dialog systems. Existing approaches for DST mainly fall into one of two categories, namely, ontology-based and ontology-free methods. An ontology-based method selects a value from a candidate-value list for each target slot, while an ontology-free method extracts spans from dialog contexts. Recent work introduced a BERT-based model to strike a balance between the two methods by pre-defining categorical and non-categorical slots. However, it is not clear enough which slots are better handled by either of the two slot types, and the way to use the pre-trained model has not been well investigated. In this paper, we propose a simple yet effective dual-strategy model for DST, by adapting a single BERT-style reading comprehension model to jointly handle both the categorical and non-categorical slots. Our experiments on the MultiWOZ datasets show that our method significantly outperforms the BERT-based counterpart, finding that the key is a deep interaction between the domain-slot and context information. When evaluated on noisy (MultiWOZ 2.0) and cleaner (MultiWOZ 2.1) settings, our method performs competitively and robustly across the two different settings. Our method sets the new state of the art in the noisy setting, while performing more robustly than the best model in the cleaner setting. We also conduct a comprehensive error analysis on the dataset, including the effects of the dual strategy for each slot, to facilitate future research.