Yao Cheng
2025
Can Large Language Models Act as Ensembler for Multi-GNNs?
Hanqi Duan
|
Yao Cheng
|
Jianxiang Yu
|
Yao Liu
|
Xiang Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, GNNs lack the inherent semantic understanding capability of rich textual node attributes, limiting their effectiveness in applications. On the other hand, we empirically observe that for existing GNN models, no one can consistently outperforms others across diverse datasets. In this paper, we study whether LLMs can act as an ensembler for multi-GNNs and propose the LensGNN model. The model first aligns multiple GNNs, mapping the representations of different GNNs into the same space. Then, through LoRA fine-tuning, it aligns the space between the GNN and the LLM, injecting graph tokens and textual information into LLMs. This allows LensGNN to ensemble multiple GNNs and take advantage of the strengths of LLM, leading to a deeper understanding of both textual semantic information and graph structural information. The experimental results show that LensGNN outperforms existing models. This research advances text-attributed graph ensemble learning by providing a robust and superior solution for integrating semantic and structural information. We provide our code and data here: https://github.com/AquariusAQ/LensGNN.
2017
Combining Global Models for Parsing Universal Dependencies
Tianze Shi
|
Felix G. Wu
|
Xilun Chen
|
Yao Cheng
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
We describe our entry, C2L2, to the CoNLL 2017 shared task on parsing Universal Dependencies from raw text. Our system features an ensemble of three global parsing paradigms, one graph-based and two transition-based. Each model leverages character-level bi-directional LSTMs as lexical feature extractors to encode morphological information. Though relying on baseline tokenizers and focusing only on parsing, our system ranked second in the official end-to-end evaluation with a macro-average of 75.00 LAS F1 score over 81 test treebanks. In addition, we had the top average performance on the four surprise languages and on the small treebank subset.