Yanran Wu
2025
Unveiling Environmental Impacts of Large Language Model Serving: A Functional Unit View
Yanran Wu
|
Inez Hua
|
Yi Ding
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) offer powerful capabilities but come with significant environmental impact, particularly in carbon emissions. Existing studies benchmark carbon emissions but lack a standardized basis for comparison across different model configurations. To address this, we introduce the concept of functional unit (FU) as a standardized basis and develop FUEL, the first FU-based framework for evaluating LLM serving’s environmental impact. Through three case studies, we uncover key insights and trade-offs in reducing carbon emissions by optimizing model size, quantization strategy, and hardware choice, paving the way for more sustainable LLM serving. The code is available at https://github.com/jojacola/FUEL.
Reward-Shifted Speculative Sampling Is An Efficient Test-Time Weak-to-Strong Aligner
Bolian Li
|
Yanran Wu
|
Xinyu Luo
|
Ruqi Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Aligning large language models (LLMs) with human preferences has become a critical step in their development. Recent research has increasingly focused on test-time alignment, where additional compute is allocated during inference to enhance LLM safety and reasoning capabilities. However, these test-time alignment techniques often incur substantial inference costs, limiting their practical application. We are inspired by the speculative sampling acceleration, which leverages a small draft model to efficiently predict future tokens, to address the efficiency bottleneck of test-time alignment. We introduce the reward-shifted speculative sampling (SSS) algorithm, in which the draft model is aligned with human preferences, while the target model remains unchanged. We theoretically demonstrate that the distributional shift between the aligned draft model and the unaligned target model can be exploited to recover the RLHF optimal solution without actually obtaining it, by modifying the acceptance criterion and bonus token distribution. Our algorithm achieves superior gold reward scores at a significantly reduced inference cost in test-time weak-to-strong alignment experiments, thereby validating both its effectiveness and efficiency.