Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an “expert” of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset’s tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-3.5-Sonnet with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
Autoregressive speech token generation models produce speech with remarkable variety and naturalness but often suffer from hallucinations and undesired vocalizations that do not conform to conditioning inputs. To address these challenges, we introduce Koel-TTS, an encoder-decoder transformer model for multilingual TTS that improves contextual adherence of speech generation LLMs through preference alignment and classifier-free guidance (CFG). For preference alignment, we design a reward system that ranks model outputs using automatic metrics derived from speech recognition and speaker verification models, encouraging generations that better match the input text and speaker identity. CFG further allows fine-grained control over the influence of conditioning inputs during inference by interpolating conditional and unconditional logits. Notably, applying CFG to a preference-aligned model yields additional gains in transcription accuracy and speaker similarity, demonstrating the complementary benefits of both techniques. Koel-TTS achieves state-of-the-art results in zero-shot TTS, outperforming prior LLM-based models on intelligibility, speaker similarity, and naturalness, despite being trained on significantly less data.