Xubin Ren


2025

pdf bib
RecGPT: A Foundation Model for Sequential Recommendation
Yangqin Jiang | Xubin Ren | Lianghao Xia | Da Luo | Kangyi Lin | Chao Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This work addresses a fundamental barrier in recommender systems: the inability to generalize across domains without extensive retraining. Traditional ID-based approaches fail entirely in cold-start and cross-domain scenarios where new users or items lack sufficient interaction history. Inspired by foundation models’ cross-domain success, we develop a foundation model for sequential recommendation that achieves genuine zero-shot generalization capabilities. Our approach fundamentally departs from existing ID-based methods by deriving item representations exclusively from textual features. This enables immediate embedding of any new item without model retraining. We introduce unified item tokenization with Finite Scalar Quantization that transforms heterogeneous textual descriptions into standardized discrete tokens. This eliminates domain barriers that plague existing systems. Additionally, the framework features hybrid bidirectional-causal attention that captures both intra-item token coherence and inter-item sequential dependencies. An efficient catalog-aware beam search decoder enables real-time token-to-item mapping. Unlike conventional approaches confined to their training domains, RecGPT naturally bridges diverse recommendation contexts through its domain-invariant tokenization mechanism. Comprehensive evaluations across six datasets and industrial scenarios demonstrate consistent performance advantages.

pdf bib
EasyRec: Simple yet Effective Language Models for Recommendation
Xubin Ren | Chao Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Deep neural networks have emerged as a powerful technique for learning representations from user-item interaction data in collaborative filtering (CF) for recommender systems. However, many existing methods heavily rely on unique user and item IDs, which restricts their performance in zero-shot learning scenarios. Inspired by the success of language models (LMs) and their robust generalization capabilities, we pose the question: How can we leverage language models to enhance recommender systems? We propose EasyRec, an effective approach that integrates text-based semantic understanding with collaborative signals. EasyRec employs a text-behavior alignment framework that combines contrastive learning with collaborative language model tuning. This ensures strong alignment between text-enhanced semantic representations and collaborative behavior information. Extensive evaluations across diverse datasets show EasyRec significantly outperforms state-of-the-art models, particularly in text-based zero-shot recommendation. EasyRec functions as a plug-and-play component that integrates seamlessly into collaborative filtering frameworks. This empowers existing systems with improved performance and adaptability to user preferences. Implementation codes are publicly available at: https://github.com/HKUDS/EasyRec

2024

pdf bib
XRec: Large Language Models for Explainable Recommendation
Qiyao Ma | Xubin Ren | Chao Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

Recommender systems help users navigate information overload by providing personalized recommendations aligned with their preferences. Collaborative Filtering (CF) is a widely adopted approach, but while advanced techniques like graph neural networks (GNNs) and self-supervised learning (SSL) have enhanced CF models for better user representations, they often lack the ability to provide explanations for the recommended items. Explainable recommendations aim to address this gap by offering transparency and insights into the recommendation decision-making process, enhancing users’ understanding. This work leverages the language capabilities of Large Language Models (LLMs) to push the boundaries of explainable recommender systems. We introduce a model-agnostic framework called XRec, which enables LLMs to provide comprehensive explanations for user behaviors in recommender systems. By integrating collaborative signals and designing a lightweight collaborative adaptor, the framework empowers LLMs to understand complex patterns in user-item interactions and gain a deeper understanding of user preferences. Our extensive experiments demonstrate the effectiveness of XRec, showcasing its ability to generate comprehensive and meaningful explanations that outperform baseline approaches in explainable recommender systems.