Recent progress in large language models (LLMs) has opened new possibilities for mental health support, yet current approaches lack realism in simulating specialized psychotherapy and fail to capture therapeutic progression over time. Narrative therapy, which helps individuals transform problematic life stories into empowering alternatives, remains underutilized due to limited access and social stigma. We address these limitations through a comprehensive framework with two core components. First, **INT** (Interactive Narrative Therapist) simulates expert narrative therapists by planning therapeutic stages, guiding reflection levels, and generating contextually appropriate responses through retrieval-augmentation. Second, **IMA** (Innovative Moment Assessment) provides a therapy-centric evaluation method that quantifies effectiveness by tracking “Innovative Moments” (IMs), critical narrative shifts in client speech signaling therapy progress. Experimental results on 260 simulated clients and 230 human participants reveal that **INT** consistently outperforms standard methods in therapeutic quality and depth. We further demonstrate the effectiveness of **INT** in synthesizing high-quality support conversations to facilitate social applications.
Automating structured clinical interviews could revolutionize mental healthcare accessibility, yet existing large language models (LLMs) approaches fail to align with psychiatric diagnostic protocols. We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational workflows through coordinated multi-agent collaboration. MAGI dynamically navigates clinical logic via four specialized agents: 1) an interview tree guided navigation agent adhering to the MINI’s branching structure, 2) an adaptive question agent blending diagnostic probing, explaining, and empathy, 3) a judgment agent validating whether the response from participants meet the node, and 4) a diagnosis Agent generating Psychometric Chain-of- Thought (PsyCoT) traces that explicitly map symptoms to clinical criteria. Experimental results on 1,002 real-world participants covering depression, generalized anxiety, social anxiety and suicide shows that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
Character-based dialogue (CharacterDial) has become essential in the industry (e.g., Character.AI), enabling users to freely customize social characters for social interactions. However, the generalizability and adaptability across various conversational scenarios inherent in customizing social characters still lack public industrial solutions. To address these challenges, by dissecting well-rounded social characters composed of both inherent social profiles and external social behaviors, we manually collect a large-scale Chinese corpus featuring characters with diverse categories and behaviors, and develop CharacterGLM models alongside well-designed refinement methods. Extensive experiments show that CharacterGLM outperforms most popular open- and closed-source LLMs and performs comparably to GPT-4. We will release our data and models for local development and deployment.