Xinyue Wang


2025

pdf bib
Mining the Past with Dual Criteria: Integrating Three types of Historical Information for Context-aware Event Forecasting
Rong Ma | Lei Wang | Yating Yang | Bo Ma | Rui Dong | Fengyi Yang | Ahtamjan Ahmat | Kaiwen Lu | Xinyue Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Event forecasting requires modeling historical event data to predict future events, and achieving accurate predictions depends on effectively capturing the relevant historical information that aids forecasting. Most existing methods focus on entities and structural dependencies to capture historical clues but often overlook implicitly relevant information. This limitation arises from overlooking event semantics and deeper factual associations that are not explicitly connected in the graph structure but are nonetheless critical for accurate forecasting. To address this, we propose a dual-criteria constraint strategy that leverages event semantics for relevance modeling and incorporates a self-supervised semantic filter based on factual event associations to capture implicitly relevant historical information. Building on this strategy, our method, termed ITHI (Integrating Three types of Historical Information), combines sequential event information, periodically repeated event information, and relevant historical information to achieve context-aware event forecasting. We evaluated the proposed ITHI method on three public benchmark datasets, achieving state-of-the-art performance and significantly outperforming existing approaches. Additionally, we validated its effectiveness on two structured temporal knowledge graph forecasting dataset.

pdf bib
Crabs: Consuming Resource via Auto-generation for LLM-DoS Attack under Black-box Settings
Yuanhe Zhang | Zhenhong Zhou | Wei Zhang | Xinyue Wang | Xiaojun Jia | Yang Liu | Sen Su
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks yet still are vulnerable to external threats, particularly LLM Denial-of-Service (LLM-DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, existing studies predominantly focus on white-box attacks, leaving black-box scenarios underexplored. In this paper, we introduce Auto-Generation for LLM-DoS (AutoDoS) attack, an automated algorithm designed for black-box LLMs. AutoDoS constructs the DoS Attack Tree and expands the node coverage to achieve effectiveness under black-box conditions. By transferability-driven iterative optimization, AutoDoS could work across different models in one prompt.Furthermore, we reveal that embedding the Length Trojan allows AutoDoS to bypass existing defenses more effectively.Experimental results show that AutoDoS significantly amplifies service response latency by over 250×↑, leading to severe resource consumption in terms of GPU utilization and memory usage. Our work provides a new perspective on LLM-DoS attacks and security defenses.