Xing Ma


2025

pdf bib
A Reasoner for Real-World Event Detection: Scaling Reinforcement Learning via Adaptive Perplexity-Aware Sampling Strategy
Xiaoyun Zhang | Jingqing Ruan | Xing Ma | Yawen Zhu | Jiansong Chen | Ke Zeng | Xunliang Cai
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Detecting abnormal events in real-world customer service dialogues is highly challenging due to the complexity of business data and the dynamic nature of customer interactions. Moreover, models must demonstrate strong out-of-domain (OOD) generalization to enable rapid adaptation across different business scenarios and maximize commercial value.In this work, we propose a novel Adaptive Perplexity-Aware Reinforcement Learning (APARL) framework that leverages the advanced reasoning capabilities of large language models for abnormal event detection. APARL introduces a dual-loop dynamic curriculum learning architecture, enabling the model to progressively focus on more challenging samples as its proficiency increases. This design effectively addresses performance bottlenecks and significantly enhances OOD transferability.Extensive evaluations on food delivery dialogue tasks show that our model achieves significantly enhanced adaptability and robustness, attaining the highest F1 score with an average improvement of 17.19%, and an average improvement of 9.59% in OOD transfer tests. This method provides a superior solution for industrial deployment of anomaly detection models, contributing to improved operational efficiency and commercial benefits.

2023

pdf bib
Domain-specific Attention with Distributional Signatures for Multi-Domain End-to-end Task-Oriented Dialogue
Xing Ma | Peng Zhang | Feifei Zhao
Findings of the Association for Computational Linguistics: ACL 2023

The end-to-end task-oriented dialogue system has achieved great success in recent years. Most of these dialogue systems need to accommodate multi-domain dialogue in real-world scenarios. However, due to the high cost of dialogue data annotation and the scarcity of labeled dialogue data, existing methods are difficult to extend to new domains. Therefore, it is important to use limited data to construct multi-domain dialogue systems. To solve this problem, we propose a novel domain attention module. It use the distributional signatures to construct a multi-domain dialogue system effectively with limited data, which has strong extensibility. We also define a adjacent n-gram pattern to explore potential patterns for dialogue entities. Experimental results show that our approach outperforms the baseline models on most metrics. In the few-shot scenario, we show our method get a great improvement compared with previous methods while keeping smaller model scale.