Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator’s preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM’s preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
Translating natural language into formal language such as Lean 4 has gained attention for its potential to automate formal proof development. Automated methods provide a scalable and cost-effective alternative to manual formalization, driving increasing interest in this task. However, existing LLMs mainly rely on instruction tuning and lack fine-grained structural and semantic alignment, making it difficult to generate syntactically and logically sound formal proofs.To address this, we propose a reinforcement learning framework ReLean that enables LLMs to generate high-quality Lean 4 statements from natural language.We first fine-tune a LLaMA3-8B model on NL–Lean 4 data to obtain a base translator with basic translation ability. Then, we design a multi-aspect dense reward mechanism covering four key dimensions: semantic alignment, term-level alignment, global-level alignment, and compile-checking. Separate reward models are trained via preference modeling, and their normalized outputs are combined to guide optimization via PPO. Finally, a curriculum learning strategy based on multi-dimensional difficulty allows the model to learn progressively from simple to complex cases. Experiments on NL-to-Lean 4 tasks show that our method consistently outperforms baseline models. Further analysis on reward model and curriculum learning confirms their effectiveness in enhancing model performance.
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs’ spatial understanding and reasoning capabilities. Our analyses on object-relationship and multi-hop reasoning reveal several important findings. Firstly, bounding boxes and scene graphs, even synthetic ones, can significantly enhance LMMs’ spatial reasoning. Secondly, LMMs struggle more with questions posed from the human perspective than the camera perspective about the image. Thirdly, chain of thought (CoT) prompting does not improve model performance on complex multi-hop questions involving spatial relations. Moreover, spatial reasoning steps are much less accurate than non-spatial ones across MLLMs. Lastly, our perturbation analysis on GQA-spatial reveals that LMMs are much stronger at basic object detection than complex spatial reasoning. We believe our new benchmark dataset and in-depth analyses can spark further research on LMMs spatial reasoning.