Chain-of-thought (CoT) distillation allows a large language model (LLM) to guide a small language model (SLM) in reasoning tasks. Existing methods train the SLM to learn the long rationale in one iteration, resulting in two issues: 1) Long rationales lead to a large token-level batch size during training, making gradients of core reasoning tokens (i.e., the token will directly affect the correctness of subsequent reasoning) over-smoothed as they contribute a tiny fraction of the rationale. As a result, the SLM converges to sharp minima where it fails to grasp the reasoning logic. 2) The response is slow, as the SLM must generate a long rationale before reaching the answer. Therefore, we propose chunk-wise training (CWT), which uses a heuristic search to divide the rationale into internal semantically coherent chunks and focuses SLM on learning from only one chunk per iteration. In this way, CWT naturally isolates non-reasoning chunks that do not involve the core reasoning token (e.g., summary and transitional chunks) from the SLM learning for reasoning chunks, making the fraction of the core reasoning token increase in the corresponding iteration. Based on CWT, skip-thinking training (STT) is proposed. STT makes the SLM automatically skip non-reasoning medium chunks to reach the answer, improving reasoning speed while maintaining accuracy. We validate our approach on a variety of SLMs and multiple reasoning tasks.
Large Language Models (LLM) have revolutionized Natural Language Processing (NLP), improving state-of-the-art and exhibiting emergent capabilities across various tasks. However, their application in extracting information from visually rich documents, which is at the core of many document processing workflows and involving the extraction of key entities from semi-structured documents, has not yet been successful. The main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs, which is critical for high quality extraction, and the lack of a grounding mechanism to localize the predicted entities within the document. In this paper, we introduce Language Model-based Document Information EXtraction and Localization (LMDX), a methodology to reframe the document information extraction task for a LLM. LMDX enables extraction of singular, repeated, and hierarchical entities, both with and without training data, while providing grounding guarantees and localizing the entities within the document. Finally, we apply LMDX to the PaLM 2-S and Gemini Pro LLMs and evaluate it on VRDU and CORD benchmarks, setting a new state-of-the-art and showing how LMDX enables the creation of high quality, data-efficient parsers.
Document understanding tasks, in particular, Visually-rich Document Entity Retrieval (VDER), have gained significant attention in recent years thanks to their broad applications in enterprise AI. However, publicly available data have been scarce for these tasks due to strict privacy constraints and high annotation costs. To make things worse, the non-overlapping entity spaces from different datasets hinder the knowledge transfer between document types. In this paper, we propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models. The collected dataset, named DocumentNet, does not depend on specific document types or entity sets, making it universally applicable to all VDER tasks. The current DocumentNet consists of 30M documents spanning nearly 400 document types organized in a four-level ontology. Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training for both classic and few-shot learning settings. With the recent emergence of large language models (LLMs), DocumentNet provides a large data source to extend their multimodal capabilities for VDER.