Xiaoning Dong
2025
SURE: Safety Understanding and Reasoning Enhancement for Multimodal Large Language Models
Yuxin Gou
|
Xiaoning Dong
|
Qin Li
|
Shishen Gu
|
Richang Hong
|
Wenbo Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal large language models (MLLMs) demonstrate impressive capabilities by integrating visual and textual information. However, the incorporation of visual modalities also introduces new and complex safety risks, rendering even the most advanced models vulnerable to sophisticated jailbreak attacks. This paper first analyzes the impact of inserting safety reasoning prompt on various aspects of the model. We find that this external method can help the model resist jailbreak attacks to some extent, but the model still fails to distinguish specific semantic scenarios, resulting in a significantly increased refusal rate for benign queries. Inspired by this, we propose a novel training framework, SURE (Safety Understanding and Reasoning Enhancement for Multimodal Large Language Models), designed to help models internalize chain-of-thought-based safety decision-making capabilities. Extensive experiments demonstrate that SURE significantly improves model safety while effectively avoiding over-defense, achieving a good balance between safety and generality. Finally, we create a large-scale multimodal safety reasoning dataset, MLLM-SCoT-Plus, to facilitate research on safety alignment in multimodal models.Our code and the dataset are publicly available at https://github.com/hfutml/SURE.
SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage
Xiaoning Dong
|
Wenbo Hu
|
Wei Xu
|
Tianxing He
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remains a major concern. Exploring jailbreak prompts can expose LLMs’ vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task—such as a masked language model task or an element lookup by position task—to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.