2025
pdf
bib
abs
Marco Large Translation Model at WMT2025: Transforming Translation Capability in LLMs via Quality-Aware Training and Decoding
Hao Wang
|
Linlong Xu
|
Heng Liu
|
Yangyang Liu
|
Xiaohu Zhao
|
Bo Zeng
|
Longyue Wang
|
Weihua Luo
|
Kaifu Zhang
Proceedings of the Tenth Conference on Machine Translation
This paper presents the Marco-MT-Algharb system, our submission to the WMT2025 General Machine Translation Shared Task from Alibaba International Digital Commerce (AIDC). Built on a large language model (LLM) foundation, the system’s strong performance stems from novel quality-aware training and decoding techniques: (1) a two-step supervised fine-tuning (SFT) process incorporating data distillation, (2) a two-step reinforcement learning (RL) framework for preference alignment, and (3) a hybrid decoding strategy that integrates word alignment with Minimum Bayes Risk (MBR) re-ranking to improve faithfulness. These approaches jointly ensure high accuracy and robustness across diverse languages and domains. In the official human evaluation, our system secured five first‐place finishes, one second, and four third‐place results in the constrained category across the 13 directions we participated in. Notably, for the English-Chinese, our results surpassed all open/closed‐source systems.
2023
pdf
bib
abs
CKDST: Comprehensively and Effectively Distill Knowledge from Machine Translation to End-to-End Speech Translation
Yikun Lei
|
Zhengshan Xue
|
Xiaohu Zhao
|
Haoran Sun
|
Shaolin Zhu
|
Xiaodong Lin
|
Deyi Xiong
Findings of the Association for Computational Linguistics: ACL 2023
Distilling knowledge from a high-resource task, e.g., machine translation, is an effective way to alleviate the data scarcity problem of end-to-end speech translation. However, previous works simply use the classical knowledge distillation that does not allow for adequate transfer of knowledge from machine translation. In this paper, we propose a comprehensive knowledge distillation framework for speech translation, CKDST, which is capable of comprehensively and effectively distilling knowledge from machine translation to speech translation from two perspectives: cross-modal contrastive representation distillation and simultaneous decoupled knowledge distillation. In the former, we leverage a contrastive learning objective to optmize the mutual information between speech and text representations for representation distillation in the encoder. In the later, we decouple the non-target class knowledge from target class knowledge for logits distillation in the decoder. Experiments on the MuST-C benchmark dataset demonstrate that our CKDST substantially improves the baseline by 1.2 BLEU on average in all translation directions, and outperforms previous state-of-the-art end-to-end and cascaded speech translation models.
pdf
bib
abs
CCSRD: Content-Centric Speech Representation Disentanglement Learning for End-to-End Speech Translation
Xiaohu Zhao
|
Haoran Sun
|
Yikun Lei
|
Shaolin Zhu
|
Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023
Deep neural networks have demonstrated their capacity in extracting features from speech inputs. However, these features may include non-linguistic speech factors such as timbre and speaker identity, which are not directly related to translation. In this paper, we propose a content-centric speech representation disentanglement learning framework for speech translation, CCSRD, which decomposes speech representations into content representations and non-linguistic representations via representation disentanglement learning. CCSRD consists of a content encoder that encodes linguistic content information from the speech input, a non-content encoder that models non-linguistic speech features, and a disentanglement module that learns disentangled representations with a cyclic reconstructor, feature reconstructor and speaker classifier trained in a multi-task learning way. Experiments on the MuST-C benchmark dataset demonstrate that CCSRD achieves an average improvement of +0.9 BLEU in two settings across five translation directions over the baseline, outperforming state-of-the-art end-to-end speech translation models and cascaded models.
pdf
bib
abs
Towards a Deep Understanding of Multilingual End-to-End Speech Translation
Haoran Sun
|
Xiaohu Zhao
|
Yikun Lei
|
Shaolin Zhu
|
Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023
In this paper, we employ Singular Value Canonical Correlation Analysis (SVCCA) to analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages. SVCCA enables us to estimate representational similarity across languages and layers, enhancing our understanding of the functionality of multilingual speech translation and its potential connection to multilingual neural machine translation. The multilingual speech translation model is trained on the CoVoST 2 dataset in all possible directions, and we utilize LASER to extract parallel bitext data for SVCCA analysis. We derive three major findings from our analysis: (I) Linguistic similarity loses its efficacy in multilingual speech translation when the training data for a specific language is limited. (II) Enhanced encoder representations and well-aligned audio-text data significantly improve translation quality, surpassing the bilingual counterparts when the training data is not compromised. (III) The encoder representations of multilingual speech translation demonstrate superior performance in predicting phonetic features in linguistic typology prediction. With these findings, we propose that releasing the constraint of limited data for low-resource languages and subsequently combining them with linguistically related high-resource languages could offer a more effective approach for multilingual end-to-end speech translation.