Xiangzheng Zhang


2025

pdf bib
Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
Liang Wen | Yunke Cai | Fenrui Xiao | Xin He | Qi An | Zhenyu Duan | Yimin Du | Junchen Liu | Tanglifu Tanglifu | Xiaowei Lv | Haosheng Zou | Yongchao Deng | Shousheng Jia | Xiangzheng Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

This paper introduces Light-R1, an opensource suite for training long reasoning modelsusing reproducible and cost-effective methodology. Given the proprietary nature of data usedin the DeepSeek-R1 series, we develop an alternative approach leveraging exclusively publicdata and models. Our curriculum training progressively increases data difficulty, combinedwith multi-staged post-training. Our LightR1-32B model, trained from Qwen2.5-32BInstruct, outperforms DeepSeek-R1-DistillQwen-32B in math reasoning. Experimental results show that this curriculum approachbecomes more effective when distinct, diverse datasets are available for different training stages: fine-tuning DeepSeek-R1-Distilledmodels (pre-tuned by DeepSeek team on proprietary data) with 3,000 challenging examplesfrom our curriculum dataset yielded state-ofthe-art 7B and 14B models, while the 32Bmodel, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying GRPOon long reasoning models. Our final Light-R1-14B-DS achieves SOTA performance among14B models in math, with AIME24 & 25 scoresof 74.0 and 60.2 respectively, surpassing many32B models and DeepSeek-R1-Distill-Llama70B. Despite math-focused training, Light-R1-14B-DS demonstrates strong cross-domain generalization. Light-R1 represents a significantadvancement in making sophisticated reasoning models more accessible and implementablein real-world applications. Our models, training data and code have been made available.

pdf bib
Large Language Models Badly Generalize across Option Length, Problem Types, and Irrelevant Noun Replacements
Guangxiang Zhao | Saier Hu | Xiaoqi Jian | Wu Jinzhu | Yuhan Wu | Lin Sun | Xiangzheng Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a “Generalization Stress Test” to assess Large Language Models’ (LLMs) generalization ability under slight and controlled perturbations, including option length, problem types, and irrelevant noun replacements. We achieve novel and significant findings that, despite high benchmark scores, LLMs exhibit severe accuracy drops and unexpected biases (e.g., preference for longer distractors) when faced with these minor but content-preserving modifications. For example, Qwen 2.5 1.5B’s MMLU score rises from 60 to 89 and drops from 89 to 36 when option lengths are changed without altering the question. Even GPT4o experiences a 25-point accuracy loss when problem types are changed, with a 6-point drop across all three modification categories. These analyses suggest that LLMs rely heavily on superficial cues rather than forming robust, abstract representations that generalize across formats, lexical variations, and shifts in irrelevant content.