Wonje Jeung


2025

pdf bib
Representation Bending for Large Language Model Safety
Ashkan Yousefpour | Taeheon Kim | Ryan Sungmo Kwon | Seungbeen Lee | Wonje Jeung | Seungju Han | Alvin Wan | Harrison Ngan | Youngjae Yu | Jonghyun Choi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks – ranging from harmful content generation to broader societal harms – pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering – simple vector arithmetic for steering model’s behavior during inference – to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.

pdf bib
R-TOFU: Unlearning in Large Reasoning Models
Sangyeon Yoon | Wonje Jeung | Albert No
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Reasoning Models (LRMs) embed private or copyrighted information not only in their final answers but also throughout multi-step chain-of-thought (CoT) traces, making reliable unlearning far more demanding than in standard LLMs. We introduce Reasoning-TOFU (R-TOFU), the first benchmark tailored to this setting. R-TOFU augments existing unlearning tasks with realistic CoT annotations and provides step-wise metrics that expose residual knowledge invisible to answer-level checks. Using R-TOFU, we carry out a comprehensive comparison of gradient-based and preference-optimization baselines and show that conventional answer-only objectives leave substantial forget traces in reasoning. We further propose Reasoned IDK, a preference-optimization variant that preserves coherent yet inconclusive reasoning, achieving a stronger balance between forgetting efficacy and model utility than earlier refusal styles. Finally, we identify a failure mode: decoding variants such as ZeroThink and LessThink can still reveal forgotten content despite seemingly successful unlearning, emphasizing the need to evaluate models under diverse decoding settings. Together, the benchmark, analysis, and new baseline establish a systematic foundation for studying and improving unlearning in LRMs while preserving their reasoning capabilities.

pdf bib
SEPS: A Separability Measure for Robust Unlearning in LLMs
Wonje Jeung | Sangyeon Yoon | Albert No
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Machine unlearning aims to selectively remove targeted knowledge from Large Language Models (LLMs), ensuring they forget specified content while retaining essential information. Existing unlearning metrics assess whether a model correctly answers retain queries and rejects forget queries, but they fail to capture real-world scenarios where forget queries rarely appear in isolation. In fact, forget and retain queries often coexist within the same prompt, making mixed-query evaluation crucial.We introduce SEPS, an evaluation framework that explicitly measures a model’s ability to both forget and retain information within a single prompt. Through extensive experiments across three benchmarks, we identify two key failure modes in existing unlearning methods: (1) untargeted unlearning indiscriminately erases both forget and retain content once a forget query appears, and (2) targeted unlearning overfits to single-query scenarios, leading to catastrophic failures when handling multiple queries. To address these issues, we propose Mixed Prompt (MP) unlearning, a strategy that integrates both forget and retain queries into a unified training objective. Our approach significantly improves unlearning effectiveness, demonstrating robustness even in complex settings with up to eight mixed forget and retain queries in a single prompt.

pdf bib
Large Language Models Still Exhibit Bias in Long Text
Wonje Jeung | Dongjae Jeon | Ashkan Yousefpour | Jonghyun Choi
Findings of the Association for Computational Linguistics: ACL 2025

Existing fairness benchmarks for large language models (LLMs) primarily focus on simple tasks, such as multiple-choice questions, overlooking biases that may arise in more complex scenarios like long-text generation. To address this gap, we introduce the Long Text Fairness Test (LTF-TEST), a framework that evaluates biases in LLMs through essay-style prompts. LTF-TEST covers 14 topics and 10 demographic axes, including gender and race, resulting in 11,948 samples. By assessing both model responses and the reasoning behind them, LTF-TEST uncovers subtle biases that are difficult to detect in simple responses. In our evaluation of five recent LLMs, including GPT-4o and LLaMA3, we identify two key patterns of bias. First, these models frequently favor certain demographic groups in their responses. Second, they show excessive sensitivity toward traditionally disadvantaged groups, often providing overly protective responses while neglecting others. To mitigate these biases, we propose REGARD-FT, a finetuning approach that pairs biased prompts with neutral responses. REGARD-FT reduces gender bias by 34.6% and improves performance by 1.4 percentage points on the BBQ benchmark, offering a promising approach to addressing biases in long-text generation tasks.