Wentao Zhang


2025

pdf bib
Taming LLMs with Gradient Grouping
Siyuan Li | Juanxi Tian | Zedong Wang | Xin Jin | Zicheng Liu | Wentao Zhang | Dan Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.

pdf bib
QAEncoder: Towards Aligned Representation Learning in Question Answering Systems
Zhengren Wang | Qinhan Yu | Shida Wei | Zhiyu Li | Feiyu Xiong | Xiaoxing Wang | Simin Niu | Hao Liang | Wentao Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. We introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments across diverse datasets, languages, and embedding models confirmed QAEncoder’s alignment capability, which offers a simple-yet-effective solution with zero additional index storage, retrieval latency, training costs, or catastrophic forgetting and hallucination issues. The repository is publicly available at https://github.com/IAAR-Shanghai/QAEncoder.

pdf bib
Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning
Peichao Lai | Zhengfeng Zhang | Wentao Zhang | Fangcheng Fu | Bin Cui
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, using large language models (LLMs) for data augmentation has led to considerable improvements in unsupervised sentence embedding models. However, existing methods encounter two primary challenges: limited data diversity and high data noise. Current approaches often neglect fine-grained knowledge, such as entities and quantities, leading to insufficient diversity. Besides, unsupervised data frequently lacks discriminative information, and the generated synthetic samples may introduce noise. In this paper, we propose a pipeline-based data augmentation method via LLMs and introduce the Gaussian-decayed gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance unsupervised sentence embeddings. To tackle the issue of low data diversity, our pipeline utilizes knowledge graphs (KGs) to extract entities and quantities, enabling LLMs to generate more diverse samples. To address high data noise, the GCSE model uses a Gaussian-decayed function to limit the impact of false hard negative samples, enhancing the model’s discriminative capability. Experimental results show that our approach achieves state-of-the-art performance in semantic textual similarity (STS) tasks, using fewer data samples and smaller LLMs, demonstrating its efficiency and robustness across various models.

pdf bib
Efficient Pretraining Data Selection for Language Models via Multi-Actor Collaboration
Tianyi Bai | Ling Yang | Zhen Hao Wong | Fupeng Sun | Xinlin Zhuang | Jiahui Peng | Chi Zhang | Lijun Wu | Qiu Jiantao | Wentao Zhang | Binhang Yuan | Conghui He
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Efficient data selection is crucial to accelerate the pretraining of language model (LMs). While various methods have been proposed to enhance data efficiency, limited research has addressed the inherent conflicts between these approaches to achieve optimal data selection for LM pretraining. To tackle this problem, we propose a multi-actor collaborative data selection mechanism. Each data selection method independently prioritizes data based on its specific criterion and updates its prioritization rules using the current state of the model, functioning as an independent actor for data selection. Additionally, a console is designed to adjust the impacts of different actors at various stages and dynamically integrate information from all actors throughout the LM pretraining process. We conduct extensive empirical studies to evaluate our multi-actor framework. The experimental results demonstrate that our approach significantly improves data efficiency, accelerates convergence in LM pretraining, and achieves an average relative performance gain up to 10.5% across multiple language model benchmarks compared to the state-of-the-art methods.

pdf bib
TCRAG: Turing–Complete RAG’s Case study on Medical LLM Systems
Xinke Jiang | Yue Fang | Rihong Qiu | Haoyu Zhang | Yongxin Xu | Hao Chen | Wentao Zhang | Ruizhe Zhang | Yuchen Fang | Xinyu Ma | Xu Chu | Junfeng Zhao | Yasha Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the pursuit of enhancing domain-specific Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) emerges as a promising solution to mitigate issues such as hallucinations, outdated knowledge, and limited expertise in highly specialized queries. However, existing approaches to RAG fall short by neglecting system state variables, which are crucial for ensuring adaptive control, retrieval halting, and system convergence. In this paper, we introduce the Turing-Complete-RAG (TC-RAG) through rigorous proof, a novel framework that addresses these challenges by incorporating a Turing Complete System to manage state variables, thereby enabling more efficient and accurate knowledge retrieval. By leveraging a memory stack system with adaptive retrieval, reasoning, and planning capabilities, TC-RAG not only ensures the controlled halting of retrieval processes but also mitigates the accumulation of erroneous knowledge via Push and Pop actions. In the case study of the medical and general domain, our extensive experiments on seven real-world healthcare and general-domain datasets demonstrate the superiority of TC-RAG over existing methods in accuracy by over 7.20%. Our code, datasets and RAG resources have been available at https://github.com/Artessay/TC-RAG.

pdf bib
MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification
Linzhuang Sun | Hao Liang | Jingxuan Wei | Bihui Yu | Tianpeng Li | Fan Yang | Zenan Zhou | Wentao Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

According to the Test-Time Scaling, the integration of External Slow-Thinking with the Verify mechanism has been demonstrated to enhance multi-round reasoning in large language models (LLMs). However, in the multimodal (MM) domain, there is still a lack of a strong MM-Verifier. In this paper, we introduce MM-Verifier and MM-Reasoner to enhance multimodal reasoning through longer inference and more robust verification. First, we propose a two-step MM verification data synthesis method, which combines a simulation-based tree search with verification and uses rejection sampling to generate high-quality Chain-of-Thought (COT) data. This data is then used to fine-tune the verification model, MM-Verifier. Additionally, we present a more efficient method for synthesizing MMCOT data, bridging the gap between text-based and multimodal reasoning. The synthesized data is used to fine-tune MM-Reasoner. Our MM-Verifier outperforms all larger models on the MathCheck, MathVista, and MathVerse benchmarks. Moreover, MM-Reasoner demonstrates strong effectiveness and scalability, with performance improving as data size increases. Finally, our approach achieves strong performance when combining MM-Reasoner and MM-Verifier, reaching an accuracy of 65.3 on MathVista, surpassing GPT-4o (63.8) with 12 rollouts.

pdf bib
CFBench: A Comprehensive Constraints-Following Benchmark for LLMs
Tao Zhang | ChengLIn Zhu | Yanjun Shen | Wenjing Luo | Yan Zhang | Hao Liang | Tao Zhang | Fan Yang | Mingan Lin | Yujing Qiao | Weipeng Chen | Bin Cui | Wentao Zhang | Zenan Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The adeptness of Large Language Models (LLMs) in comprehending and following natural language instructions is critical for their deployment in sophisticated real-world applications. Existing evaluations mainly focus on fragmented constraints or narrow scenarios, but they overlook the comprehensiveness and authenticity of constraints from the user’s perspective. To bridge this gap, we propose CFBench, a large-scale Chinese Comprehensive Constraints Following Benchmark for LLMs, featuring 1,000 curated samples that cover more than 200 real-life scenarios and over 50 NLP tasks. CFBench meticulously compiles constraints from real-world instructions and constructs an innovative systematic framework for constraint types, which includes 10 primary categories and over 25 subcategories, and ensures each constraint is seamlessly integrated within the instructions. To make certain that the evaluation of LLM outputs aligns with user perceptions, we propose an advanced methodology that integrates multi-dimensional assessment criteria with requirement prioritization, covering various perspectives of constraints, instructions, and requirement fulfillment. Evaluating current leading LLMs on CFBench reveals substantial room for improvement in constraints following, and we further investigate influencing factors and enhancement strategies. The data and code will be made available.

pdf bib
SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs
Yuanyang Yin | Yaqi Zhao | Yajie Zhang | Yuanxing Zhang | Ke Lin | Jiahao Wang | Xin Tao | Pengfei Wan | Wentao Zhang | Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities by integrating visual and textual inputs, yet modality alignment remains one of the most challenging aspects. Current MLLMs typically rely on simple adapter architectures and pretraining approaches to bridge vision encoders with large language models (LLM), guided by image-level supervision. We identify this paradigm often leads to suboptimal alignment between modalities, significantly constraining the LLM’s ability to properly interpret and reason with visual features particularly for smaller language models. To address this fundamental limitation, we propose Supervised Embedding Alignment (SEA), a token-level supervision alignment method that enables more precise visual-text alignment during pretraining. SEA introduces minimal computational overhead while preserving language capabilities and substantially improving cross-modal understanding. Our comprehensive analyses reveal critical insights into the adapter’s role in multimodal integration, and extensive experiments demonstrate that SEA consistently improves performance across various model sizes, with smaller models benefiting the most (average performance gain of 7.61% for Gemma-2B). This work establishes a foundation for developing more effective alignment strategies for future multimodal systems.

pdf bib
Improving Low-Resource Sequence Labeling with Knowledge Fusion and Contextual Label Explanations
Peichao Lai | Jiaxin Gan | Feiyang Ye | Wentao Zhang | Fangcheng Fu | Yilei Wang | Bin Cui
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Sequence labeling remains a significant challenge in low-resource, domain-specific scenarios, particularly for character-dense languages. Existing methods primarily focus on enhancing model comprehension and improving data diversity to boost performance. However, these approaches still struggle with inadequate model applicability and semantic distribution biases in domain-specific contexts. To overcome these limitations, we propose a novel framework that combines an LLM-based knowledge enhancement workflow with a span-based Knowledge Fusion for Rich and Efficient Extraction (KnowFREE) model. Our workflow employs explanation prompts to generate precise contextual interpretations of target entities, effectively mitigating semantic biases and enriching the model’s contextual understanding. The KnowFREE model further integrates extension label features, enabling efficient nested entity extraction without relying on external knowledge during inference. Experiments on multiple domain-specific sequence labeling datasets demonstrate that our approach achieves state-of-the-art performance, effectively addressing the challenges posed by low-resource settings.

pdf bib
VersaTune: An Efficient Data Composition Framework for Training Multi-Capability LLMs
Keer Lu | Keshi Zhao | Zhuoran Zhang | Zheng Liang | Bin Cui | Tengjiao Wang | Wentao Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As demonstrated by the proprietary Large Language Models (LLMs) such as GPT and Claude series, LLMs have the potential to achieve remarkable proficiency across a wide range of domains, including law, medicine, finance, science, code, etc., all within a single model. These capabilities are further augmented during the Supervised Fine-Tuning (SFT) phase. Despite their potential, existing work mainly focuses on domain-specific enhancements during fine-tuning, the challenge of which lies in catastrophic forgetting of knowledge across other domains. In this study, we introduce **VersaTune**, a novel data composition framework designed for enhancing LLMs’ overall multi-domain capabilities during training. We begin with detecting the distribution of domain-specific knowledge within the base model, followed by the training data composition that aligns with the model’s existing knowledge distribution. During the subsequent training process, domain weights are dynamically adjusted based on their learnable potential and forgetting degree. Experimental results indicate that VersaTune is effective in multi-domain fostering, with an improvement of 29.77% in the overall multi-ability performances compared to uniform domain weights. Furthermore, we find that Qwen-2.5-32B + VersaTune even surpasses frontier models, including GPT-4o, Claude3.5-Sonnet and DeepSeek-V3 by 0.86%, 4.76% and 4.60%. Additionally, in scenarios where flexible expansion of a specific domain is required, VersaTune reduces the performance degradation in other domains by 38.77%, while preserving the training efficacy of the target domain.

pdf bib
FB-Bench: A Fine-Grained Multi-Task Benchmark for Evaluating LLMs’ Responsiveness to Human Feedback
Youquan Li | Miao Zheng | Fan Yang | Guosheng Dong | Bin Cui | Weipeng Chen | Zenan Zhou | Wentao Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Human feedback is crucial in the interactions between humans and Large Language Models (LLMs). However, existing research primarily focuses on benchmarking LLMs in single-turn dialogues. Even in benchmarks designed for multi-turn dialogues, the user utterances are often independent, neglecting the nuanced and complex nature of human feedback within real-world usage scenarios. To fill this research gap, we introduce FB-Bench, a fine-grained, multi-task benchmark designed to evaluate LLMs’ responsiveness to human feedback under real-world usage scenarios in Chinese. Drawing from the two main interaction scenarios, FB-Bench comprises 591 meticulously curated samples, encompassing eight task types, five deficiency types of response, and nine feedback types. We extensively evaluate a broad array of popular LLMs, revealing significant variations in their performance across different interaction scenarios. Further analysis indicates that task, human feedback, and deficiencies of previous responses can also significantly impact LLMs’ responsiveness. Our findings underscore both the strengths and limitations of current models, providing valuable insights and directions for future research.

pdf bib
Can LLMs be Good Graph Judge for Knowledge Graph Construction?
Haoyu Huang | Chong Chen | Zeang Sheng | Yang Li | Wentao Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In real-world scenarios, most of the data obtained from the information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. We identified three limitations with respect to existing KG construction methods: (1) There could be a large amount of noise in real-world documents, which could result in extracting messy information. (2) Naive LLMs usually extract inaccurate knowledge from some domain-specific documents. (3) Hallucination phenomenon cannot be overlooked when directly using LLMs to construct KGs. In this paper, we propose GraphJudge, a KG construction framework to address the aforementioned challenges. In this framework, we designed an entity-centric strategy to eliminate the noise information in the documents. And we fine-tuned a LLM as a graph judge to finally enhance the quality of generated KGs. Experiments conducted on two general and one domain-specific text-graph pair datasets demonstrate state-of-the-art performance against various baseline methods with strong generalization abilities.

pdf bib
From Chat Logs to Collective Insights: Aggregative Question Answering
Wentao Zhang | Woojeong Kim | Yuntian Deng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Conversational agents powered by large language models (LLMs) are rapidly becoming integral to our daily interactions, generating unprecedented amounts of conversational data. Such datasets offer a powerful lens into societal interests, trending topics, and collective concerns. Yet existing approaches typically treat these interactions as independent, missing critical insights that could emerge from aggregating and reasoning across large-scale conversation logs. In this paper, we introduce Aggregative Question Answering, a novel task requiring models to reason explicitly over thousands of user-chatbot interactions to answer aggregational queries, such as identifying emerging concerns among specific demographics. To enable research in this direction, we construct a benchmark, WildChat-AQA, comprising 6,027 aggregative questions derived from 182,330 real-world chatbot conversations. Experiments show that existing methods either struggle to reason effectively or incur prohibitive computational costs, underscoring the need for new approaches capable of extracting collective insights from large-scale conversational data.

pdf bib
Interactive Training: Feedback-Driven Neural Network Optimization
Wentao Zhang | Yang Young Lu | Yuntian Deng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolves instabilities, and optimizes training dynamics.

pdf bib
HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
Hao Liu | Zhengren Wang | Xi Chen | Zhiyu Li | Feiyu Xiong | Qinhan Yu | Wentao Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG, a novel RAG framework that augments retrieval with logical reasoning through graph-structured knowledge exploration. During indexing, HopRAG constructs a passage graph, with text chunks as vertices and logical connections established via LLM-generated pseudo-queries as edges. During retrieval, it employs a retrieve-reason-prune mechanism: starting with lexically or semantically similar passages, the system explores multi-hop neighbors guided by pseudo-queries and LLM reasoning to identify truly relevant ones. Experiments on multiple multi-hop benchmarks demonstrate that HopRAG’s retrieve-reason-prune mechanism can expand the retrieval scope based on logical connections and improve final answer quality.

2024

pdf bib
ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training
Le Zhuo | Zewen Chi | Minghao Xu | Heyan Huang | Jianan Zhao | Heqi Zheng | Conghui He | Xian-Ling Mao | Wentao Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose ProtLLM, a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks. ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs where the natural language text is interspersed with an arbitrary number of proteins. Besides, we propose the protein-as-word language modeling approach to train ProtLLM. By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates. Additionally, we construct a large-scale interleaved protein-text dataset, named InterPT, for pre-training. This dataset comprehensively encompasses both (1) structured data sources like protein annotations and (2) unstructured data sources like biological research papers, thereby endowing ProtLLM with crucial knowledge for understanding proteins. We evaluate ProtLLM on classic supervised protein-centric tasks and explore its novel protein-language applications. Experimental results demonstrate that ProtLLM not only achieves superior performance against protein-specialized baselines on protein-centric tasks but also induces zero-shot and in-context learning capabilities on protein-language tasks.

2023

pdf bib
Patton: Language Model Pretraining on Text-Rich Networks
Bowen Jin | Wentao Zhang | Yu Zhang | Yu Meng | Xinyang Zhang | Qi Zhu | Jiawei Han
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A real-world text corpus sometimes comprises not only text documents, but also semantic links between them (e.g., academic papers in a bibliographic network are linked by citations and co-authorships).Text documents and semantic connections form a text-rich network, which empowers a wide range of downstream tasks such as classification and retrieval. However, pretraining methods for such structures are still lacking, making it difficult to build one generic model that can be adapted to various tasks on text-rich networks. Current pretraining objectives, such as masked language modeling, purely model texts and do not take inter-document structure information into consideration. To this end, we propose our PretrAining on TexT-Rich NetwOrk framework Patton.Patton includes two pretraining strategies: network-contextualized masked language modeling and masked node prediction, to capture the inherent dependency between textual attributes and network structure. We conduct experiments on four downstream tasks in five datasets from both academic and e-commerce domains, where Patton outperforms baselines significantly and consistently.