Weizhi Zhang


2025

pdf bib
TestNUC: Enhancing Test-Time Computing Approaches and Scaling through Neighboring Unlabeled Data Consistency
Henry Peng Zou | Zhengyao Gu | Yue Zhou | Yankai Chen | Weizhi Zhang | Liancheng Fang | Yibo Wang | Yangning Li | Kay Liu | Philip S. Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Test-time computing approaches, which leverage additional computational resources during inference, have been proven effective in enhancing large language model performance. This work introduces a novel, linearly scaling approach, TestNUC, that improves test-time predictions by leveraging the local consistency of neighboring unlabeled data-it classifies an input instance by considering not only the model’s prediction on that instance but also on neighboring unlabeled instances. We evaluate TestNUC across eight diverse datasets, spanning intent classification, topic mining, domain discovery, and emotion detection, demonstrating its consistent superiority over baseline methods such as standard prompting and self-consistency. Furthermore, TestNUC can be seamlessly integrated with existing test-time computing approaches, substantially boosting their performance. Our analysis reveals that TestNUC scales effectively with increasing amounts of unlabeled data and performs robustly across different embedding models, making it practical for real-world applications. Our code is available at https://github.com/HenryPengZou/TestNUC.

pdf bib
WebAgent-R1: Training Web Agents via End-to-End Multi-Turn Reinforcement Learning
Zhepei Wei | Wenlin Yao | Yao Liu | Weizhi Zhang | Qin Lu | Liang Qiu | Changlong Yu | Puyang Xu | Chao Zhang | Bing Yin | Hyokun Yun | Lihong Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

While reinforcement learning (RL) has demonstrated remarkable success in enhancing large language models (LLMs), it has primarily focused on single-turn tasks such as solving math problems. Training effective web agents for multi-turn interactions remains challenging due to the complexity of long-horizon decision-making across dynamic web interfaces. In this work, we present WebAgent-R1, a simple yet effective end-to-end multi-turn RL framework for training web agents. It learns directly from online interactions with web environments by asynchronously generating diverse trajectories, entirely guided by binary rewards depending on task success. Experiments on the WebArena-Lite benchmark demonstrate the effectiveness of WebAgent-R1, boosting the task success rate of Qwen-2.5-3B from 6.1% to 33.9% and LLaMA-3.1-8B from 8.5% to 44.8%, significantly outperforming existing state-of-the-art methods and strong proprietary models such as OpenAI o3. In-depth analyses reveal the effectiveness of the thinking-based prompting strategy and test-time scaling through increased interactions for web tasks. We further investigate different RL initialization policies by introducing two variants, namely WebAgent-R1-Zero and WebAgent-R1-CoT, which highlight the importance of the warm-up training stage (i.e., behavior cloning) and provide insights on incorporating long chain-of-thought (CoT) reasoning in web agents.

pdf bib
LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation
Weizhi Zhang | Liangwei Yang | Wooseong Yang | Henry Peng Zou | Yuqing Liu | Ke Xu | Sourav Medya | Philip S. Yu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Collaborative filtering (CF) is widely adopted in industrial recommender systems (RecSys) for modeling user-item interactions across numerous applications, but often struggles with cold-start and data-sparse scenarios. Recent advancements in pre-trained large language models (LLMs) with rich semantic knowledge, offer promising solutions to these challenges. However, deploying LLMs at scale is hindered by their significant computational demands and latency. In this paper, we propose a novel and scalable LLM-RecSys framework, LLMInit, designed to integrate pretrained LLM embeddings into CF models through selective initialization strategies. Specifically, we identify the embedding collapse issue observed when CF models scale and match the large embedding sizes in LLMs and avoid the problem by introducing efficient sampling methods, including, random, uniform, and variance-based selections. Comprehensive experiments conducted on multiple real-world datasets demonstrate that LLMInit significantly improves recommendation performance while maintaining low computational costs, offering a practical and scalable solution for industrial applications. To facilitate industry adoption and promote future research, we provide open-source access to our implementation at https://github.com/DavidZWZ/LLMInit.

pdf bib
TABGEN-ICL: Residual-Aware In-Context Example Selection for Tabular Data Generation
Liancheng Fang | Aiwei Liu | Hengrui Zhang | Henry Peng Zou | Weizhi Zhang | Philip S. Yu
Findings of the Association for Computational Linguistics: ACL 2025

Large Language models (LLMs) have achieved encouraging results in tabular data generation. However, existing approaches require fine-tuning, which is computationally expensive. This paper explores an alternative: prompting a fixed LLM with in-context examples. We observe that using randomly selected in-context examples hampers the LLM’s performance, resulting in sub-optimal generation quality. To address this, we propose a novel in-context learning framework: TabGen-ICL, to enhance the in-context learning ability of LLMs for tabular data generation. TabGen-ICL operates iteratively, retrieving a subset of real samples that represent the residual between currently generated samples and true data distributions. This approach serves two purposes: locally, it provides more effective in-context learning examples for the LLM in each iteration; globally, it progressively narrows the gap between generated and real data. Extensive experiments on five real-world tabular datasets demonstrate that TabGen-ICL significantly outperforms the random selection strategy. Specifically, it reduces the error rate by a margin of up to 42.2% on the fidelity metric. We demonstrate for the first time that prompting a fixed LLM can yield high-quality synthetic tabular data.

2024

pdf bib
ImplicitAVE: An Open-Source Dataset and Multimodal LLMs Benchmark for Implicit Attribute Value Extraction
Henry Peng Zou | Vinay Samuel | Yue Zhou | Weizhi Zhang | Liancheng Fang | Zihe Song | Philip S. Yu | Cornelia Caragea
Findings of the Association for Computational Linguistics: ACL 2024

Existing datasets for attribute value extraction (AVE) predominantly focus on explicit attribute values while neglecting the implicit ones, lack product images, are often not publicly available, and lack an in-depth human inspection across diverse domains. To address these limitations, we present ImplicitAVE, the first, publicly available multimodal dataset for implicit attribute value extraction. ImplicitAVE, sourced from the MAVE dataset, is carefully curated and expanded to include implicit AVE and multimodality, resulting in a refined dataset of 68k training and 1.6k testing data across five domains. We also explore the application of multimodal large language models (MLLMs) to implicit AVE, establishing a comprehensive benchmark for MLLMs on the ImplicitAVE dataset. Six recent MLLMs with eleven variants are evaluated across diverse settings, revealing that implicit value extraction remains a challenging task for MLLMs. The contributions of this work include the development and release of ImplicitAVE, and the exploration and benchmarking of various MLLMs for implicit AVE, providing valuable insights and potential future research directions. Dataset and code are available at https://github.com/HenryPengZou/ImplicitAVE.

2023

pdf bib
DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet Classification via Memory Bank
Henry Peng Zou | Yue Zhou | Weizhi Zhang | Cornelia Caragea
Findings of the Association for Computational Linguistics: EMNLP 2023

During crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support. Emergency relief organizations leverage such information to acquire timely crisis circumstances and expedite rescue operations. While existing works utilize such information to build models for crisis event analysis, fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time. On the other hand, semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others, resulting in substantially negative effects on disaster monitoring and rescue. In this paper, we first study two recent debiasing methods on semi-supervised crisis tweet classification. Then we propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training iteration. Extensive experiments are conducted to compare different debiasing methods’ performance and generalization ability in both in-distribution and out-of-distribution settings. The results demonstrate the superior performance of our proposed method. Our code is available at https://github.com/HenryPengZou/DeCrisisMB.