Weizhi Ma
2025
How Far Can LLMs Improve from Experience? Measuring Test-Time Learning Ability in LLMs with Human Comparison
Jiayin Wang
|
Zhiqiang Guo
|
Weizhi Ma
|
Min Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
As evaluation designs of large language models may shape our trajectory toward artificial general intelligence, comprehensive and forward-looking assessment is essential. Existing benchmarks primarily assess static knowledge, while intelligence also entails the ability to rapidly learn from experience. To this end, we advocate for the evaluation of Test-time Learning, the capacity to improve performance in experience-based, reasoning-intensive tasks during test time. In this work, we propose semantic games as effective testbeds for evaluating test-time learning, due to their resistance to saturation and inherent demand for strategic reasoning. We introduce an objective evaluation framework that compares model performance under both limited and cumulative experience settings, and contains four forms of experience representation. To provide a comparative baseline, we recruit eight human participants to complete the same task. Results show that LLMs exhibit measurable test-time learning capabilities; however, their improvements are less stable under cumulative experience and progress more slowly than those observed in humans. These findings underscore the potential of LLMs as general-purpose learning machines, while also revealing a substantial intellectual gap between models and humans, irrespective of how well LLMs perform on static benchmarks. The code and data are available.
2024
Citation-Enhanced Generation for LLM-based Chatbots
Weitao Li
|
Junkai Li
|
Weizhi Ma
|
Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our code and datasets can be found at https://github.com/Tsinghua-dhy/CEG.
A User-Centric Multi-Intent Benchmark for Evaluating Large Language Models
Jiayin Wang
|
Fengran Mo
|
Weizhi Ma
|
Peijie Sun
|
Min Zhang
|
Jian-Yun Nie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) are essential tools that users employ across various scenarios, so evaluating their performance and guiding users in selecting the suitable service is important. Although many benchmarks exist, they mainly focus on specific predefined model abilities, such as world knowledge, reasoning, etc. Based on these ability scores, it is hard for users to determine which LLM best suits their particular needs. To address these issues, we propose to evaluate LLMs from a user-centric perspective and design this benchmark to measure their efficacy in satisfying user needs under distinct intents. Firstly, we collect 1,846 real-world use cases from a user study with 712 participants from 23 countries. This first-hand data helps us understand actual user intents and needs in LLM interactions, forming the User Reported Scenarios (URS) dataset, which is categorized with six types of user intents. Secondly, based on this authentic dataset, we benchmark 10 LLM services with GPT-4-as-Judge. Thirdly, we show that benchmark scores align well with human preference in both real-world experience and pair-wise annotations, achieving Pearson correlations of 0.95 and 0.94, respectively. This alignment confirms that the URS dataset and our evaluation method establish an effective user-centric benchmark. The dataset, code, and process data are publicly available at https://github.com/Alice1998/URS.
Search
Fix author
Co-authors
- Jiayin Wang 2
- Min Zhang (张民) 2
- Zhiqiang Guo 1
- Weitao Li 1
- Junkai Li 1
- show all...