Weicong Qin


2025

pdf bib
MAPS: Motivation-Aware Personalized Search via LLM-Driven Consultation Alignment
Weicong Qin | Yi Xu | Weijie Yu | Chenglei Shen | Ming He | Jianping Fan | Xiao Zhang | Jun Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Personalized product search aims to retrieve and rank items that match users’ preferences and search intent. Despite their effectiveness, existing approaches typically assume that users’ query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks. Code and supplementary materials are available at: https://github.com/E-qin/MAPS.

pdf bib
Similarity = Value? Consultation Value-Assessment and Alignment for Personalized Search
Weicong Qin | Yi Xu | Weijie Yu | Teng Shi | Chenglei Shen | Ming He | Jianping Fan | Xiao Zhang | Jun Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Personalized search systems in e-commerce platforms increasingly involve user interactions with AI assistants, where users consult about products, usage scenarios, and more. Leveraging consultation to personalize search services is trending. Existing methods typically rely on semantic similarity to align historical consultations with current queries due to the absence of ‘value’ labels, but we observe that semantic similarity alone often fails to capture the true value of consultation for personalization. To address this, we propose a consultation value assessment framework that evaluates historical consultations from three novel perspectives: (1) Scenario Scope Value, (2) Posterior Action Value, and (3) Time Decay Value. Based on this, we introduce VAPS, a value-aware personalized search model that selectively incorporates high-value consultations through a consultation–user action interaction module and an explicit objective that aligns consultations with user actions. Experiments on both public and commercial datasets show that VAPS consistently outperforms baselines in both retrieval and ranking tasks. Codes are available at https://github.com/E-qin/VAPS.