Viktor Kunčak


2025

pdf bib
Reliable Evaluation and Benchmarks for Statement Autoformalization
Auguste Poiroux | Gail Weiss | Viktor Kunčak | Antoine Bosselut
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Evaluating statement autoformalization, translating natural language mathematics into formal languages like Lean 4, remains a significant challenge, with few metrics, datasets, and standards to robustly measure progress. In this work, we present a comprehensive approach combining improved metrics, robust benchmarks, and systematic evaluation, to fill this gap. First, we introduce BEq+, an automated metric that correlates strongly with human judgment, along with ProofNetVerif, a new dataset for assessing the quality of evaluation metrics, containing 3,752 annotated examples. Second, we develop two new autoformalization benchmarks: ProofNet#, a corrected version of ProofNet, and RLM25, with 619 new pairs of research-level mathematics from six formalization projects. Through systematic experimentation across these benchmarks, we find that current techniques can achieve up to 45.1% accuracy on undergraduate mathematics but struggle with research-level content without proper context. Our work establishes a reliable foundation for evaluating and advancing autoformalization systems.