Vibhav Vineet


2025

pdf bib
Exposing the Achilles’ Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning
Joykirat Singh | Akshay Nambi | Vibhav Vineet
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have significantly impacted the field of Math Word Problems (MWPs), transforming how these problems are approached and solved, particularly in educational contexts. However, existing evaluations often focus on final accuracy, neglecting the critical aspect of reasoning capabilities. This work addresses that gap by evaluating LLMs’ abilities to detect and correct reasoning mistakes. We present a novel dataset, MWP-MISTAKE, containing MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models. Our comprehensive benchmarking of state-of-the-art models such as GPT-4o and GPT4 uncovers important insights into their strengths and limitations. While GPT-4o excels in mistake detection and rectification, gaps remain, particularly in handling complex datasets and novel problems. Additionally, we identify concerns with data contamination and memorization, which affect LLM reliability in real-world applications. While OpenAI’ O1 model demonstrates 90% accuracy in reasoning and final answers on complex tasks, it remains weak in mistake detection. Our findings highlight the need for improved reasoning evaluations and suggest ways to enhance LLM generalization and robustness in math problem-solving.

pdf bib
RiTTA: Modeling Event Relations in Text-to-Audio Generation
Yuhang He | Yash Jain | Xubo Liu | Andrew Markham | Vibhav Vineet
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Existing text-to-audio (TTA) generation methods have neither systematically explored audio event relation modeling, nor proposed any new framework to enhance this capability. In this work, we systematically study audio event relation modeling in TTA generation models. We first establish a benchmark for this task by: (1) proposing a comprehensive relation corpus covering all potential relations in real-world scenarios; (2) introducing a new audio event corpus encompassing commonly heard audios; and (3) proposing new evaluation metrics to assess audio event relation modeling from various perspectives. Furthermore, we propose a gated prompt tuning strategy that improves existing TTA models’ relation modeling capability with negligible extra parameters. Specifically, we introduce learnable relation and event prompt that append to the text prompt before feeding to existing TTA models.

pdf bib
Out of Sight, Not Out of Context? Egocentric Spatial Reasoning in VLMs Across Disjoint Frames
Sahithya Ravi | Gabriel Herbert Sarch | Vibhav Vineet | Andrew D Wilson | Balasaravanan Thoravi Kumaravel
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

An embodied AI assistant operating on egocentric video must integrate spatial cues across time - for instance, determining where an object A, glimpsed a few moments ago lies relative to an object B encountered later. We introduce Disjoint-3DQA , a generative QA benchmark that evaluates this ability of VLMs by posing questions about object pairs that are not co-visible in the same frame. We evaluated seven state-of-the-art VLMs and found that models lag behind human performance by 28%, with steeper declines in accuracy (60% → 30 %) as the temporal gap widens. Our analysis further reveals that providing trajectories or bird’s-eye-view projections to VLMs results in only marginal improvements, whereas providing oracle 3D coordinates leads to a substantial 20% performance increase. This highlights a core bottleneck of multi-frame VLMs in constructing and maintaining 3D scene representations over time from visual signals. Disjoint-3DQA therefore sets a clear, measurable challenge for long-horizon spatial reasoning and aims to catalyze future research at the intersection of vision, language, and embodied AI.

pdf bib
Grounding Task Assistance with Multimodal Cues from a Single Demonstration
Gabriel Herbert Sarch | Balasaravanan Thoravi Kumaravel | Sahithya Ravi | Vibhav Vineet | Andrew D Wilson
Findings of the Association for Computational Linguistics: ACL 2025

A person’s demonstration often serves as a key reference for others learning the same task. However, RGB video, the dominant medium for representing these demonstrations, often fails to capture fine-grained contextual cues such as intent, safety-critical environmental factors, and subtle preferences embedded in human behavior. This sensory gap fundamentally limits the ability of Vision Language Models (VLMs) to reason about why actions occur and how they should adapt to individual users. To address this, we introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues. MICA segments demonstrations into meaningful sub-tasks and extracts keyframes and captions that capture fine-grained intent and user-specific cues, enabling richer contextual grounding for visual question answering. Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval. Notably, gaze cues alone achieves 93% of speech performance, and their combination yields the highest accuracy. Task type determines the effectiveness of implicit (gaze) vs. explicit (speech) cues, underscoring the need for adaptable multimodal models. These results highlight the limitations of frame-based context and demonstrate the value of multimodal signals for real-world AI task assistance.

2024

pdf bib
Navigating Hallucinations for Reasoning of Unintentional Activities
Shresth Grover | Vibhav Vineet | Yogesh S Rawat
Findings of the Association for Computational Linguistics: EMNLP 2024

In this work we present a novel task of understanding unintentional human activities in videos. We formalize this problem as a reasoning task under zero-shot scenario, where given a video of an unintentional activity we want to know why it transitioned from intentional to unintentional. We first evaluate the effectiveness of current state-of-the-art Large Multimodal Models on this reasoning task and observe that they suffer from hallucination. We further propose a novel prompting technique, termed as Dream of Thoughts (DoT), which allows the model to navigate through hallucinated thoughts to achieve better reasoning. To evaluate the performance on this task, we also introduce three different specialized metrics designed to quantify the models reasoning capability. We perform our experiments on three datasets, OOPs, UCF-Crimes, and ReUAct, and our findings show that DOT prompting technique is able to outperform standard prompting, while minimizing hallucinations.

2022

pdf bib
Image Retrieval from Contextual Descriptions
Benno Krojer | Vaibhav Adlakha | Vibhav Vineet | Yash Goyal | Edoardo Ponti | Siva Reddy
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe.Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.