Tongxu Luo


2025

pdf bib
Fine-Grained Manipulation of Arithmetic Neurons
Wenyu Du | Rui Zheng | Tongxu Luo | Stephen Chung | Jie Fu
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

It is a longstanding challenge to understand how neural models perform mathematical reasoning. Recent mechanistic interpretability work indicates that large language models (LLMs) use a “bag of heuristics” in middle to late-layer MLP neurons for arithmetic, where each heuristic promotes logits for specific numerical patterns. Building on this, we aim for fine-grained manipulation of these heuristic neurons to causally steer model predictions towards specific arithmetic outcomes, moving beyond simply disrupting accuracy. This paper presents a methodology that enables the systematic identification and causal manipulation of heuristic neurons, which is applied to the addition task in this study. We train a linear classifier to predict heuristics based on activation values, achieving over 90% classification accuracy. The trained classifier also allows us to rank neurons by their importance to a given heuristic. By targeting a small set of top-ranked neurons (K=50), we demonstrate high success rates—over 80% for the ones place and nearly 70% for the tens place—in controlling addition outcomes. This manipulation is achieved by transforming the activation of identified neurons into specific target heuristics by zeroing out source-heuristic neurons and adjusting target-heuristic neurons towards their class activation centroids. We explain these results by hypothesizing that high-ranking neurons possess ‘cleaner channels’ for their heuristics, supported by Signal-to-Noise Ratio (SNR) analysis where these neurons show higher SNR scores. Our work offers a robust approach to dissect, causally test, and precisely influence LLM arithmetic, advancing understanding of their internal mechanisms.

2024

pdf bib
Neeko: Leveraging Dynamic LoRA for Efficient Multi-Character Role-Playing Agent
Xiaoyan Yu | Tongxu Luo | Yifan Wei | Fangyu Lei | Yiming Huang | Hao Peng | Liehuang Zhu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have revolutionized open-domain dialogue agents but encounter challenges in multi-character role-playing (MCRP) scenarios. To address the issue, we present Neeko, an innovative framework designed for efficient multiple characters imitation. Neeko employs a dynamic low-rank adapter (LoRA) strategy, enabling it to adapt seamlessly to diverse characters. Our framework breaks down the role-playing process into agent pre-training, multiple characters playing, and character incremental learning, effectively handling both seen and unseen roles. This dynamic approach, coupled with distinct LoRA blocks for each character, enhances Neeko’s adaptability to unique attributes, personalities, and speaking patterns. As a result, Neeko demonstrates superior performance in MCRP over most existing methods, offering more engaging and versatile user interaction experiences.

pdf bib
Unlocking Continual Learning Abilities in Language Models
Wenyu Du | Shuang Cheng | Tongxu Luo | Zihan Qiu | Zeyu Huang | Ka Chun Cheung | Reynold Cheng | Jie Fu
Findings of the Association for Computational Linguistics: EMNLP 2024