Post-training is essential for enabling large language models (LLMs) to follow human instructions. However, its effectiveness depends on high-quality instruction data, which is challenging to obtain in the real world due to privacy concerns, data scarcity, and high annotation costs. To fill this gap, inspired by the recent success of using LLMs to simulate human society, we propose MATRIX, a multi-agent simulator that automatically generates diverse text-based scenarios, capturing a wide range of real-world human needs in a realistic and scalable manner. Leveraging these outputs, we introduce a novel scenario-driven instruction generator MATRIX-Gen for controllable and highly realistic data synthesis. Extensive experiments demonstrate that our framework effectively generates both general and domain-specific data. On AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta’s Llama-3-8B-Instruct model, which was trained on over 10M pairs.
The advancement of mobile GUI agents has opened new opportunities for automating tasks on mobile devices. Training these agents requires large-scale high-quality data, which is prohibitively expensive when relying on human labor. Given the vast population of global mobile phone users, if automated data collection from them becomes feasible, the resulting data volume and the subsequently trained mobile agents could reach unprecedented levels. Nevertheless, two major challenges arise: (1) extracting user instructions without human intervention and (2) utilizing distributed user data while preserving privacy.To tackle these challenges, we propose MobileA3gent, a collaborative framework that trains mobile GUI Agents using decentralized self-sourced data from diverse users. The framework comprises two components, each targeting a specific challenge: (1) Auto-Annotation, which enables the automatic collection of high-quality datasets during users’ routine phone usage with minimal cost. (2) FedVLM-A, which enhances federated VLM training under non-IID distributions by incorporating adapted global aggregation based on both episode-level and step-level variability. Extensive experiments prove that MobileA3gent achieves superior performance over traditional approaches at only 1% of the cost, highlighting its potential for real-world applications. Our code is publicly available at: https://anonymous.4open.science/r/MobileA3gent-Anonymous.
Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters.