Tahar Kechadi
2025
SSA: Semantic Contamination of LLM-Driven Fake News Detection
Cheng Xu
|
Nan Yan
|
Shuhao Guan
|
Yuke Mei
|
Tahar Kechadi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Benchmark data contamination (BDC) silently inflate the evaluation performance of large language models (LLMs), yet current work on BDC has centered on direct token overlap (data/label level), leaving the subtler and equally harmful semantic level BDC largely unexplored. This gap is critical in fake news detection task, where prior exposure to semantic BDC lets a model “remember” the answer instead of reasoning. In this work, (1) we are the first to formally define semantic contamination for this task and (2) introduce the Semantic Sensitivity Amplifier (SSA), a lightweight, model-agnostic framework that detects BDC risks across semantic to label level via an entity shift perturbation and a comprehensive interpretable metric, the SSA Factor. Evaluating 45 variants of nine LLMs (0.5B–72B parameters) across four BDC levels, we find LIAR2 accuracy climbs monotonically with injected contamination, while the SSA Factor escalates in near-perfect lock-step (r≥.97, for models ≥3B, p<.05; 𝜌 ≥.9 overall, p<.05). These results show that SSA provides a sensitive and scalable audit of comprehensive BDC risk and paves the way for a more integrity evaluation of the LLM-driven fake news detection task.
DCR: Quantifying Data Contamination in LLMs Evaluation
Cheng Xu
|
Nan Yan
|
Shuhao Guan
|
Changhong Jin
|
Yuke Mei
|
Yibing Guo
|
Tahar Kechadi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The rapid advancement of large language models (LLMs) has heightened concerns about benchmark data contamination (BDC), where models inadvertently memorize evaluation data during the training process, inflating performance metrics, and undermining genuine generalization assessment. This paper introduces the Data Contamination Risk (DCR) framework, a lightweight, interpretable pipeline designed to detect and quantify BDC risk across four granular levels: semantic, informational, data, and label. By synthesizing contamination scores via a fuzzy inference system, DCR produces a unified DCR Factor that adjusts raw accuracy to reflect contamination-aware performance. Validated on 9 LLMs (0.5B-72B) across sentiment analysis, fake news detection, and arithmetic reasoning tasks, the DCR framework reliably diagnoses contamination severity and with accuracy adjusted using the DCR Factor to within 4% average error across the three benchmarks compared to the uncontaminated baseline. Emphasizing computational efficiency and transparency, DCR provides a practical tool for integrating contamination assessment into routine evaluations, fostering fairer comparisons and enhancing the credibility of LLM benchmarking practices.