Sungrae Park
2025
ZERA: Zero-init Instruction Evolving Refinement Agent – From Zero Instructions to Structured Prompts via Principle-based Optimization
Seungyoun Yi
|
Minsoo Khang
|
Sungrae Park
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Automatic Prompt Optimization (APO) improves large language model (LLM) performance by refining prompts for specific tasks. However, prior APO methods typically focus only on user prompts, rely on unstructured feedback, and require large sample sizes and long iteration cycles—making them costly and brittle. We propose ZERA (Zero-init Instruction Evolving Refinement Agent), a novel framework that jointly optimizes both system and user prompts through principled, low-overhead refinement. ZERA scores prompts using eight generalizable criteria with automatically inferred weights, and revises prompts based on these structured critiques. This enables fast convergence to high-quality prompts using minimal examples and short iteration cycles. We evaluate ZERA across five LLMs and nine diverse datasets spanning reasoning, summarization, and code generation tasks. Experimental results demonstrate consistent improvements over strong baselines. Further ablation studies highlight the contribution of each component to more effective prompt construction. Our implementation including all prompts is publicly available at https://github.com/younatics/zera-agent.
2020
Scale down Transformer by Grouping Features for a Lightweight Character-level Language Model
Sungrae Park
|
Geewook Kim
|
Junyeop Lee
|
Junbum Cha
|
Ji-Hoon Kim
|
Hwalsuk Lee
Proceedings of the 28th International Conference on Computational Linguistics
This paper introduces a method that efficiently reduces the computational cost and parameter size of Transformer. The proposed model, refer to as Group-Transformer, splits feature space into multiple groups, factorizes the calculation paths, and reduces computations for the group interaction. Extensive experiments on two benchmark tasks, enwik8 and text8, prove our model’s effectiveness and efficiency in small-scale Transformers. To the best of our knowledge, Group-Transformer is the first attempt to design Transformer with the group strategy, widely used for efficient CNN architectures.
Search
Fix author
Co-authors
- Junbum Cha 1
- Minsoo Khang 1
- Geewook Kim 1
- Ji-Hoon Kim 1
- Junyeop Lee 1
- show all...