Sungahn Ko


2025

pdf bib
VEHME: A Vision-Language Model For Evaluating Handwritten Mathematics Expressions
Thu Phuong Nguyen | Duc M. Nguyen | Hyotaek Jeon | Hyunwook Lee | Hyunmin Song | Sungahn Ko | Taehwan Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Automatically assessing handwritten mathematical solutions is an important problem in educational technology with practical applications, but remains a significant challenge due to the diverse formats, unstructured layouts, and symbolic complexity of student work. To address this challenge, we introduce VEHME-a Vision-Language Model for Evaluating Handwritten Mathematics Expressions—designed to assess open-form handwritten math responses with high accuracy and interpretable reasoning traces. VEHME integrates a two-phase training pipeline: (i) supervised fine-tuning using structured reasoning data, and (ii) reinforcement learning that aligns model outputs with multi-dimensional grading objectives, including correctness, reasoning depth, and error localization. To enhance spatial understanding, we propose an Expression-Aware Visual Prompting Module, trained on our synthesized multi-line math expressions dataset to robustly guide attention in visually heterogeneous inputs. Evaluated on AIHub and FERMAT datasets, VEHME achieves state-of-the-art performance among open-source models and approaches the accuracy of proprietary systems, demonstrating its potential as a scalable and accessible tool for automated math assessment. Our training and experiment code is publicly available at our GitHub repository.