Subin Kim


2025

pdf bib
MIRROR: Multimodal Cognitive Reframing Therapy for Rolling with Resistance
Subin Kim | Hoonrae Kim | Jihyun Lee | Yejin Jeon | Gary Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent studies have explored the use of large language models (LLMs) in psychotherapy; however, text-based cognitive behavioral therapy (CBT) models often struggle with client resistance, which can weaken therapeutic alliance. To address this, we propose a multimodal approach that incorporates nonverbal cues, which allows the AI therapist to better align its responses with the client’s negative emotional state.Specifically, we introduce a new synthetic dataset, Mirror (Multimodal Interactive Rolling with Resistance), which is a novel synthetic dataset that pairs each client’s statements with corresponding facial images. Using this dataset, we train baseline vision language models (VLMs) so that they can analyze facial cues, infer emotions, and generate empathetic responses to effectively manage client resistance.These models are then evaluated in terms of both their counseling skills as a therapist, and the strength of therapeutic alliance in the presence of client resistance. Our results demonstrate that Mirror significantly enhances the AI therapist’s ability to handle resistance, which outperforms existing text-based CBT approaches.Human expert evaluations further confirm the effectiveness of our approach in managing client resistance and fostering therapeutic alliance.

pdf bib
Multimodal Cognitive Reframing Therapy via Multi-hop Psychotherapeutic Reasoning
Subin Kim | Hoonrae Kim | Heejin Do | Gary Lee
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Previous research has revealed the potential of large language models (LLMs) to support cognitive reframing therapy; however, their focus was primarily on text-based methods, often overlooking the importance of non-verbal evidence crucial in real-life therapy. To alleviate this gap, we extend the textual cognitive reframing to multimodality, incorporating visual clues. Specifically, we present a new dataset called Multi Modal-Cognitive Support Conversation (M2CoSC), which pairs each GPT-4-generated dialogue with an image that reflects the virtual client’s facial expressions.To better mirror real psychotherapy, where facial expressions lead to interpreting implicit emotional evidence, we propose a multi-hop psychotherapeutic reasoning approach that explicitly identifies and incorporates subtle evidence. Our comprehensive experiments with both LLMs and vision-language models (VLMs) demonstrate that the VLMs’ performance as psychotherapists is significantly improved with the M2CoSC dataset. Furthermore, the multi-hop psychotherapeutic reasoning method enables VLMs to provide more thoughtful and empathetic suggestions, outperforming standard prompting methods.