Somshubra Majumdar


2025

pdf bib
Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models
Somshubra Majumdar | Vahid Noroozi | Mehrzad Samadi | Sean Narenthiran | Aleksander Ficek | Wasi Uddin Ahmad | Jocelyn Huang | Jagadeesh Balam | Boris Ginsburg
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Large Language Models (LLMs) require high quality instruction data for effective alignment, particularly in code generation tasks where expert curated datasets are expensive to produce. We present Genetic-Instruct, a scalable algorithm for synthesizing large-scale, high quality coding instructions using evolutionary principles. Starting from a small set of seed instructions, Genetic-Instruct generates diverse and challenging instruction-code pairs by leveraging an Instructor-LLM for generation, a Coder-LLM for code synthesis, and a Judge-LLM for automatic quality evaluation. Our proposed approach is highly parallelizable and effective even with a small seed data and weaker generator models. We generated more than 7.5 million coding instructions with the proposed approach. Then we evaluated it by fine-tuning LLMs with the synthetic samples and demonstrated a significant improvement in their code generation capability compared to the other synthetic generation approaches and publicly available datasets. Our results highlight the efficiency, scalability, and generalizability of the Genetic-Instruct framework.

pdf bib
SWAN: An Efficient and Scalable Approach for Long-Context Language Modeling
Krishna C Puvvada | Faisal Ladhak | Santiago Akle Serano | Cheng-Ping Hsieh | Shantanu Acharya | Somshubra Majumdar | Fei Jia | Samuel Kriman | Simeng Sun | Dima Rekesh | Boris Ginsburg
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We present SWAN, a causal Transformer architecture in the decoder-only style that generalizes robustly to sequence lengths substantially longer than those seen during training. SWAN interleaves layers without positional encodings (NoPE) and sliding-window attention layers equipped with rotary positional encodings (SWA-RoPE), and applies a dynamic scaling mechanism for attention scores during inference. Experiments demonstrate that SWAN achieves strong length extrapolation without requiring additional long-context training. In addition, SWAN is more computationally efficient than the standard Transformer architecture, resulting in lower training cost and higher inference throughput. We further demonstrate that existing pre-trained decoder-only models can be adapted to the SWAN architecture with minimal continued training, enabling extended contexts. Overall, our work presents an effective approach for scaling language models to longer contexts in a robust and efficient manner.

2022

pdf bib
NVIDIA NeMo Offline Speech Translation Systems for IWSLT 2022
Oleksii Hrinchuk | Vahid Noroozi | Abhinav Khattar | Anton Peganov | Sandeep Subramanian | Somshubra Majumdar | Oleksii Kuchaiev
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper provides an overview of NVIDIA NeMo’s speech translation systems for the IWSLT 2022 Offline Speech Translation Task. Our cascade system consists of 1) Conformer RNN-T automatic speech recognition model, 2) punctuation-capitalization model based on pre-trained T5 encoder, 3) ensemble of Transformer neural machine translation models fine-tuned on TED talks. Our end-to-end model has less parameters and consists of Conformer encoder and Transformer decoder. It relies on the cascade system by re-using its pre-trained ASR encoder and training on synthetic translations generated with the ensemble of NMT models. Our En->De cascade and end-to-end systems achieve 29.7 and 26.2 BLEU on the 2020 test set correspondingly, both outperforming the previous year’s best of 26 BLEU.