Siyu Li


2025

pdf bib
MIO: A Foundation Model on Multimodal Tokens
Zekun Moore Wang | King Zhu | Chunpu Xu | Wangchunshu Zhou | Jiaheng Liu | Yibo Zhang | Jessie Wang | Ning Shi | Siyu Li | Yizhi Li | Haoran Que | Zhaoxiang Zhang | Yuanxing Zhang | Ge Zhang | Ke Xu | Jie Fu | Wenhao Huang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.

pdf bib
Multilingual Retrieval Augmented Generation for Culturally-Sensitive Tasks: A Benchmark for Cross-lingual Robustness
Bryan Li | Fiona Luo | Samar Haider | Adwait Agashe | Siyu Li | Runqi Liu | Miranda Muqing Miao | Shriya Ramakrishnan | Yuan Yuan | Chris Callison-Burch
Findings of the Association for Computational Linguistics: ACL 2025

The paradigm of retrieval-augmented generated (RAG) helps mitigate hallucinations of large language models (LLMs). However, RAG also introduces biases contained within the retrieved documents. These biases can be amplified in scenarios which are multilingual and culturally-sensitive, such as territorial disputes. We thus introduce BordIRLines, a dataset of territorial disputes paired with retrieved Wikipedia documents, across 49 languages. We evaluate the cross-lingual robustness of this RAG setting by formalizing several modes for multilingual retrieval. Our experiments on several LLMs show that incorporating perspectives from diverse languages can in fact improve robustness; retrieving multilingual documents best improves response consistency and decreases geopolitical bias over RAG with purely in-language documents. We also consider how RAG responses utilize presented documents, finding a much wider variance in the linguistic distribution of response citations, when querying in low-resource languages. Our further analyses investigate the various aspects of a cross-lingual RAG pipeline, from retrieval to document contents. We release our benchmark to support continued research towards equitable information access across languages, at https://huggingface.co/datasets/borderlines/bordirlines.

2024

pdf bib
ContextBLIP: Doubly Contextual Alignment for Contrastive Image Retrieval from Linguistically Complex Descriptions
Honglin Lin | Siyu Li | Guoshun Nan | Chaoyue Tang | Xueting Wang | Jingxin Xu | Rong Yankai | Zhouzhili Zhouzhili | Yutong Gao | Qimei Cui | Xiaofeng Tao
Findings of the Association for Computational Linguistics: ACL 2024

Image retrieval from contextual descriptions (IRCD) aims to identify an image within a set of minimally contrastive candidates based on linguistically complex text. Despite the success of VLMs, they still significantly lag behind human performance in IRCD. The main challenges lie in aligning key contextual cues in two modalities, where these subtle cues are concealed in tiny areas of multiple contrastive images and within the complex linguistics of textual descriptions. This motivates us to propose ContextBLIP, a simple yet effective method that relies on a doubly contextual alignment scheme for challenging IRCD. Specifically, 1) our model comprises a multi-scale adapter, a matching loss, and a text-guided masking loss. The adapter learns to capture fine-grained visual cues. The two losses enable iterative supervision for the adapter, gradually highlighting the focal patches of a single image to the key textual cues. We term such a way as intra-contextual alignment. 2) Then, ContextBLIP further employs an inter-context encoder to learn dependencies among candidates, facilitating alignment between the text to multiple images. We term this step as inter-contextual alignment. Consequently, the nuanced cues concealed in each modality can be effectively aligned. Experiments on two benchmarks show the superiority of our method. We observe that ContextBLIP can yield comparable results with GPT-4V, despite involving about 7,500 times fewer parameters.