Shuodi Liu


2025

pdf bib
Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models
Shuodi Liu | Yingzhuo Liu | Zi Wang | Yusheng Wang | Huijia Wu | Liuyu Xiang | Zhaofeng He
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.

2024

pdf bib
LLMArena: Assessing Capabilities of Large Language Models in Dynamic Multi-Agent Environments
Junzhe Chen | Xuming Hu | Shuodi Liu | Shiyu Huang | Wei-Wei Tu | Zhaofeng He | Lijie Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models (LLMs) have revealed their potential for achieving autonomous agents possessing human-level intelligence. However, existing benchmarks for evaluating LLM Agents either use static datasets, potentially leading to data leakage or focus only on single-agent scenarios, overlooking the complexities of multi-agent interactions. There is a lack of a benchmark that evaluates the diverse capabilities of LLM agents in multi-agent, dynamic environments. To this end, we introduce LLMArena, a novel and easily extensible framework for evaluating the diverse capabilities of LLM in multi-agent dynamic environments. LLMArena encompasses seven distinct gaming environments, employing Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration. We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents, especially in opponent modeling and team collaboration. We hope LLMArena could guide future research towards enhancing these capabilities in LLMs, ultimately leading to more sophisticated and practical applications in dynamic, multi-agent settings.