Shuo Chen


2025

pdf bib
Multimodal Pragmatic Jailbreak on Text-to-image Models
Tong Liu | Zhixin Lai | Jiawen Wang | Gengyuan Zhang | Shuo Chen | Philip Torr | Vera Demberg | Volker Tresp | Jindong Gu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two closed-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from around 10% to 70% where DALL·E 3 demonstrates almost the highest unsafety. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while these filters may be effective for single modality detection, they fail to work against our jailbreak. We also investigate the underlying reason for such jailbreaks, from the perspective of text rendering capability and training data. Our work provides a foundation for further development towards more secure and reliable T2I models.

pdf bib
Can an Individual Manipulate the Collective Decisions of Multi-Agents?
Fengyuan Liu | Rui Zhao | Shuo Chen | Guohao Li | Philip Torr | Lei Han | Jindong Gu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Individual Large Language Models (LLMs) have demonstrated significant capabilities across various domains, such as healthcare and law. Recent studies also show that coordinated multi-agent systems exhibit enhanced decision-making and reasoning abilities through collaboration. However, due to the vulnerabilities of individual LLMs and the difficulty of accessing all agents in a multi-agent system, a key question arises: If attackers only know one agent, could they still generate adversarial samples capable of misleading the collective decision?To explore this question, we formulate it as a game with incomplete information, where attackers know only one target agent and lack knowledge of the other agents in the system. With this formulation, we propose M-Spoiler, a framework that simulates agent interactions within a multi-agent system to generate adversarial samples. These samples are then used to manipulate the target agent in the target system, misleading the system’s collaborative decision-making process.More specifically, M-Spoiler introduces a stubborn agent that actively aids in optimizing adversarial samples by simulating potential stubborn responses from agents in the target system. This enhances the effectiveness of the generated adversarial samples in misleading the system.Through extensive experiments across various tasks, our findings confirm the risks posed by the knowledge of an individual agent in multi-agent systems and demonstrate the effectiveness of our framework.We also explore several defense mechanisms, showing that our proposed attack framework remains more potent than baselines, underscoring the need for further research into defensive strategies.

pdf bib
METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
Mengyue Wang | Shuo Chen | Kristian Kersting | Volker Tresp | Yunpu Ma
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs’ inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.

pdf bib
Nuclear Deployed!: Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents
Rongwu Xu | Xiaojian Li | Shuo Chen | Wei Xu
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent’s Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents.

2024

pdf bib
Boosting LLM Agents with Recursive Contemplation for Effective Deception Handling
Shenzhi Wang | Chang Liu | Zilong Zheng | Siyuan Qi | Shuo Chen | Qisen Yang | Andrew Zhao | Chaofei Wang | Shiji Song | Gao Huang
Findings of the Association for Computational Linguistics: ACL 2024

Recent advances in large language models (LLMs) have led to significant success in using LLMs as agents. Nevertheless, a common assumption that LLMs always process honest information neglects the widespread deceptive or misleading content in human and AI-generated material. This oversight might expose LLMs to malicious manipulations. To enhance LLMs’ ability to identify and counteract deceptive information, in this paper, inspired by humans’ recursive thinking and perspective-taking, we introduce a novel cognitive framework, Recursive Contemplation (ReCon). ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others’ mental states, and the second-order involves understanding how others perceive the agent’s mental state. After integrating ReCon with various LLMs, extensive experiment results from the Avalon game and BigTom benchmark indicate ReCon’s efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we demonstrate ReCon’s scaling trend with model parameters, and explore the current limitations of LLMs in terms of safety and reasoning, potentially furnishing insights for subsequent research. Our project page can be found at https://shenzhi-wang.github.io/avalon_recon.

pdf bib
Visual Question Decomposition on Multimodal Large Language Models
Haowei Zhang | Jianzhe Liu | Zhen Han | Shuo Chen | Bailan He | Volker Tresp | Zhiqiang Xu | Jindong Gu
Findings of the Association for Computational Linguistics: EMNLP 2024

Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model’s question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.