Complex narrative contexts often challenge language models’ ability to follow instructions, and existing benchmarks fail to capture these difficulties. To address this, we propose Concise-SAE, a training-free framework that improves instruction following by identifying and editing instruction-relevant neurons using only natural language instructions, without requiring labelled data. To thoroughly evaluate our method, we introduce FreeInstruct, a diverse and realistic benchmark that highlights the challenges of instruction following in narrative-rich settings. While initially motivated by complex narratives, Concise-SAE demonstrates state-of-the-art instruction adherence across varied tasks without compromising generation quality.
Multilingual representations embed words with similar meanings to share a common semantic space across languages, creating opportunities to transfer debiasing effects between languages. However, existing methods for debiassing are unable to exploit this opportunity because they operate on individual languages. We present Iterative Multilingual Spectral Attribute Erasure (IMSAE), which identifies and mitigates joint bias subspaces across multiple languages through iterative SVD-based truncation. Evaluating IMSAE across eight languages and five demographic dimensions, we demonstrate its effectiveness in both standard and zero-shot settings, where target language data is unavailable, but linguistically similar languages can be used for debiasing. Our comprehensive experiments across diverse language models (BERT, LLaMA, Mistral) show that IMSAE outperforms traditional monolingual and cross-lingual approaches while maintaining model utility.
We present Team Cher’s submission to the ArabicNLP 2024 KSAA-CAD shared task on the reverse dictionary for Arabic—the retrieval of words using definitions as a query. Our approach is based on a multi-task learning framework that jointly learns reverse dictionary, definition generation, and reconstruction tasks. This work explores different tokenization strategies and compares retrieval performance for each embedding architecture. Evaluation using the KSAA-CAD benchmark demonstrates the effectiveness of our multi-task approach and provides insights into the reverse dictionary task for Arabic. It is worth highlighting that we achieve strong performance without using any external resources in addition to the provided training data.
We describe a simple and effective method (Spectral Attribute removaL; SAL) to remove private or guarded information from neural representations. Our method uses matrix decomposition to project the input representations into directions with reduced covariance with the guarded information rather than maximal covariance as factorization methods normally use. We begin with linear information removal and proceed to generalize our algorithm to the case of nonlinear information removal using kernels. Our experiments demonstrate that our algorithm retains better main task performance after removing the guarded information compared to previous work. In addition, our experiments demonstrate that we need a relatively small amount of guarded attribute data to remove information about these attributes, which lowers the exposure to sensitive data and is more suitable for low-resource scenarios.
We present the Assignment-Maximization Spectral Attribute removaL (AMSAL) algorithm, which erases information from neural representations when the information to be erased is implicit rather than directly being aligned to each input example. Our algorithm works by alternating between two steps. In one, it finds an assignment of the input representations to the information to be erased, and in the other, it creates projections of both the input representations and the information to be erased into a joint latent space. We test our algorithm on an extensive array of datasets, including a Twitter dataset with multiple guarded attributes, the BiasBios dataset, and the BiasBench benchmark. The latter benchmark includes four datasets with various types of protected attributes. Our results demonstrate that bias can often be removed in our setup. We also discuss the limitations of our approach when there is a strong entanglement between the main task and the information to be erased.1