Shuhan Qi


2025

pdf bib
Merge then Realign: Simple and Effective Modality-Incremental Continual Learning for Multimodal LLMs
Dingkun Zhang | Shuhan Qi | Xinyu Xiao | Kehai Chen | Xuan Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is efficient to reuse the existing ones and extend them to more modalities through Modality-incremental Continual Learning (MCL). The exploration of MCL is in its early stages. In this work, we dive into the causes of performance degradation in MCL. We uncover that it suffers not only from forgetting as in traditional continual learning, but also from misalignment between the modality-agnostic and modality-specific components. To this end, we propose an elegantly simple MCL paradigm called “MErge then ReAlign” (MERA) to address both forgetting and misalignment. MERA avoids introducing heavy model budgets or modifying model architectures, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate the impressive performance of MERA, holding an average of 99.84% Backward Relative Gain when extending to four modalities, achieving nearly lossless MCL performance. Our findings underscore the misalignment issue in MCL. More broadly, our work showcases how to adjust different components of MLLMs during continual learning.

pdf bib
MDIT-Bench: Evaluating the Dual-Implicit Toxicity in Large Multimodal Models
Bohan Jin | Shuhan Qi | Kehai Chen | Xinyi Guo | Xuan Wang
Findings of the Association for Computational Linguistics: ACL 2025

The widespread use of Large Multimodal Models (LMMs) has raised concerns about model toxicity. However, current research mainly focuses on explicit toxicity, with less attention to some more implicit toxicity regarding prejudice and discrimination. To address this limitation, we introduce a subtler type of toxicity named dual-implicit toxicity and a novel toxicity benchmark termed MDIT-Bench: Multimodal Dual-Implicit Toxicity Benchmark. Specifically, we first create the MDIT-Dataset with dual-implicit toxicity using the proposed Multi-stage Human-in-loop In-context Generation method. Based on this dataset, we construct the MDIT-Bench, a benchmark for evaluating the sensitivity of models to dual-implicit toxicity, with 317,638 questions covering 12 categories, 23 subcategories, and 780 topics. MDIT-Bench includes three difficulty levels, and we propose a metric to measure the toxicity gap exhibited by the model across them. In the experiment, we conducted MDIT-Bench on 13 prominent LMMs, and the results show that these LMMs cannot handle dual-implicit toxicity effectively. The model’s performance drops significantly in hard level, revealing that these LMMs still contain a significant amount of hidden but activatable toxicity. The data will be released upon the paper’s acceptance.

2011

pdf bib
Coreference Resolution with Loose Transitivity Constraints
Xinxin Li | Xuan Wang | Shuhan Qi
Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task