As digital platforms redefine educational paradigms, ensuring interactivity remains vital for effective learning. This paper explores using Multimodal Large Language Models (MLLMs) to automatically respond to student questions from online lectures - a novel question answering task of real world significance. We introduce the EduVidQA Dataset with 5252 question-answer pairs (both synthetic and real-world) from 296 computer science videos covering diverse topics and difficulty levels. To understand the needs of the dataset and task evaluation, we empirically study the qualitative preferences of students, which we provide as an important contribution to this line of work. Our benchmarking experiments consist of 6 state-of-the-art MLLMs, through which we study the effectiveness of our synthetic data for finetuning, as well as showing the challenging nature of the task. We evaluate the models using both text-based and qualitative metrics, thus showing a nuanced perspective of the models’ performance, which is paramount to future work. This work not only sets a benchmark for this important problem, but also opens exciting avenues for future research in the field of Natural Language Processing for Education.
This paper describes our submission to the Cross-Lingual Classification of Corporate Social Responsibility (CSR) Themes and Topics shared task, aiming to identify themes and fine-grained topics present in news articles. Classifying news articles poses several challenges, including limited training data, noisy articles, and longer context length. In this paper, we explore the potential of using pretrained transformer models to classify news articles into CSR themes and fine-grained topics. We propose two different approaches for these tasks. For multi-class classification of CSR themes, we suggest using a pretrained multi-lingual encoder-based model like microsoft/mDeBERTa-v3-base, along with a variable selection network to classify the article into CSR themes. To identify all fine-grained topics in each article, we propose using a pretrained encoder-based model like Longformer, which offers a higher context length. We employ chunking-based inference to avoid information loss in inference and experimented with using different parts and manifestation of original article for training and inference.
We propose a classification framework for semantic type identification of compounds in Sanskrit. We broadly classify the compounds into four different classes namely, Avyayībhāva, Tatpuruṣa, Bahuvrīhi and Dvandva. Our classification is based on the traditional classification system followed by the ancient grammar treatise Adṣṭādhyāyī, proposed by Pāṇini 25 centuries back. We construct an elaborate features space for our system by combining conditional rules from the grammar Adṣṭādhyāyī, semantic relations between the compound components from a lexical database Amarakoṣa and linguistic structures from the data using Adaptor Grammars. Our in-depth analysis of the feature space highlight inadequacy of Adṣṭādhyāyī, a generative grammar, in classifying the data samples. Our experimental results validate the effectiveness of using lexical databases as suggested by Amba Kulkarni and Anil Kumar, and put forward a new research direction by introducing linguistic patterns obtained from Adaptor grammars for effective identification of compound type. We utilise an ensemble based approach, specifically designed for handling skewed datasets and we %and Experimenting with various classification methods, we achieve an overall accuracy of 0.77 using random forest classifiers.