Shu-Ting Pi


2025

pdf bib
REIC: RAG-Enhanced Intent Classification at Scale
Ziji Zhang | Michael Yang | Zhiyu Chen | Yingying Zhuang | Shu-Ting Pi | Qun Liu | Rajashekar Maragoud | Vy Nguyen | Anurag Beniwal
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Accurate intent classification is critical for efficient routing in customer service, ensuring customers are connected with the most suitable agents while reducing handling times and operational costs. However, as companies expand their product lines, intent classification faces scalability challenges due to the increasing number of intents and variations in taxonomy across different verticals. In this paper, we introduce REIC, a Retrieval-augmented generation Enhanced Intent Classification approach, which addresses these challenges effectively. REIC leverages retrieval-augmented generation (RAG) to dynamically incorporate relevant knowledge, enabling precise classification without the need for frequent retraining. Through extensive experiments on real-world datasets, we demonstrate that REIC outperforms traditional fine-tuning, zero-shot, and few-shot methods in large-scale customer service settings. Our results highlight its effectiveness in both in-domain and out-of-domain scenarios, demonstrating its potential for real-world deployment in adaptive and large-scale intent classification systems.

2024

pdf bib
Don’t Shoot The Breeze: Topic Continuity Model Using Nonlinear Naive Bayes With Attention
Shu-Ting Pi | Pradeep Bagavan | Yejia Li | Disha Disha | Qun Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Utilizing Large Language Models (LLM) as chatbots in diverse business scenarios often presents the challenge of maintaining topic continuity. Abrupt shifts in topics can lead to poor user experiences and inefficient utilization of computational resources. In this paper, we present a topic continuity model aimed at assessing whether a response aligns with the initial conversation topic. Our model is built upon the expansion of the corresponding natural language understanding (NLU) model into quantifiable terms using a Naive Bayes approach. Subsequently, we have introduced an attention mechanism and logarithmic nonlinearity to enhance its capability to capture topic continuity. This approach allows us to convert the NLU model into an interpretable analytical formula. In contrast to many NLU models constrained by token limits, our proposed model can seamlessly handle conversations of any length with linear time complexity. Furthermore, the attention mechanism significantly improves the model’s ability to identify topic continuity in complex conversations. According to our experiments, our model consistently outperforms traditional methods, particularly in handling lengthy and intricate conversations. This unique capability offers us an opportunity to ensure the responsible and interpretable use of LLMs.